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What is a Model?

In this section...

“Model Definition” on page 1-2
“Expressions” on page 1-2
“Quantities” on page 1-3

“Model Hierarchy” on page 1-4

Model Definition

A SimBiology® model is composed of a set of expressions (reactions,
differential equations, discrete events), which together describe the dynamics
of a biological system. You write expressions in terms of quantities
(compartments, species, parameters), which are also enumerated in the model.

Expressions

There are three distinct types of expressions in SimBiology:

e Reactions
e Rules

e Events

Reactions

A reaction describes a process such as a transformation, transport, or
binding/unbinding process between reactants and products.

Example reactions include:

Creatine + ATP <-> ADP + phosphocreatine
cytoplasm.speciesA -> nucleus.speciesA
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Rules

A rule is a class of mathematical expressions that include differential
equations, initial assignments, repeated assignments, and algebraic
constraints.

For example, you can use a rule to:

® Specify values for model components that are required for comparison with
experimental data. For example, specify the active fraction of total protein.

e Assign values to model components based on the values of other
components in the model. For example, define a parameter’s value as being
proportional to a species or another parameter.

¢ Define mass balance equations.

® For species, use rate rules as an alternative to the differential rate
expression generated from reactions.

Events

An event describes an instantaneous change in the value of a quantity
(compartment, species, parameter). The discrete transition occurs when a
user-specified condition becomes true. The condition can be a specific time or
a specific time-independent condition.

For example, you can use an event to:

Activate or deactivate a specific species (activator or inhibitor species)
® Change a parameter value based on external signals

® Change reaction rates in response to addition or removal of a species

Replicate an experimental condition, such as the addition or removal of an
activating agent (such as a drug) to or from a sample

Quantities

SimBiology uses three types of quantities in models:

e Compartments

® Species

1-3
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e Parameters

Compartments

A compartment defines a physically bounded region that contains species. A
compartment is characterized by a capacity expressed as volume, area, or
length. A compartment can also contain other compartments, which adds
hierarchy to a model. For example, a compartment named cytoplasm might
contain a compartment named nucleus, thereby partitioning species based
on their location.

Species

A species characterizes the state of the biological system by representing the
amount (or concentration) present in the system for that entity. Examples of
species are DNA, ATP, and creatine. Species’ amounts (or concentrations) vary
during a simulation as a result of their participation in reactions, differential
equations, and events. Therefore, species represent the dynamical state of a
biological system.

Parameters

A parameter is a quantity that is referred to by expressions. It typically
remains constant during a simulation. For example, parameters are used as
rate constants in reactions.

You can configure a parameter to vary during a simulation. This is useful, for
example, to model the change in a reaction rate given the concentration of a
catalyst or a change in temperature.

Model Hierarchy
Quantities are organized as illustrated in the following diagram.
Note the following conditions imposed on model hierarchy:

® Models must contain at least one compartment.
¢ A compartment can contain one or more compartments.

® Species are always contained within a compartment.
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Model Modifiers

In this section...

“Variants” on page 1-5
“Doses” on page 1-5

“How Variants and Doses Modify a Model” on page 1-6

In addition to expressions and quantities, which are model components,
SimBiology provides the following constructs (or objects) that you use to
modify or perturb a model from its base configuration.

Variants

A variants is a collection of quantities (compartments, species, and/or
parameters) that you can use to alter a model’s initial or base configuration,
which is easier than individually modifying each quantity separately. For
example, assuming that a different set of parameter values characterizes
differences between wild type and mutant strains, you can use a variant to
group parameter values indicative of these strains. You apply variants to a
model to evaluate the model behavior under "variant" conditions. Note that
the model’s original configuration is only temporarily altered, for example
during a simulation.

For example, you can use a variant to compare:

¢ Two different species, such as human versus mouse
* Wild type versus mutant strains

¢ Different experimental conditions

Doses

A dose is used to increment the amount (or concentration) of a species
exogenously. For example, you can use a dose to model the instantaneous
supply of a drug regimen during the simulation of a model.

1-5
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How Variants and Doses Modify a Model

The following graphic illustrates how variants and doses modify a model:

1-6
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Representing a Model and Model Modifiers in SimBiology

In this section...

“Constructing a Simple Model” on page 1-7
“SimBiology Objects” on page 1-8

“Model Object” on page 1-8

“Objects Representing Quantities” on page 1-8
“Compartment Object” on page 1-9

“Species Object” on page 1-10

“Parameter Object” on page 1-13

“Objects Representing Expressions” on page 1-14
“Reaction Object” on page 1-15

“Rule Object” on page 1-21

“Event Object” on page 1-26

“Objects Representing Model Modifiers” on page 1-35
“Variant Object” on page 1-35

“Dose Object” on page 1-37

Constructing a Simple Model

The following code shows how to construct a simple model consisting of one
compartment, two species, a parameter, and a reaction:

% Create a model named example

model = sbiomodel('example');

% Add a compartment named cell to model

compartment = addcompartment(model, ‘'cell');

% Add two species, A and B, to the cell compartment
species_1 = addspecies(compartment, 'A');

species_2 = addspecies(compartment, 'B');

% Add a parameter, K1, to model with a value of 3
parameter = addparameter(model, 'K1', 3);

% Add the reaction A -> B to the model
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reaction = addreaction(model, 'A -> B', 'ReactionRate', 'K1');

SimBiology Objects

In SimBiology, models and their components are implemented as objects.
For example, in the previous code, model is a model object composed of a
compartment object, compartment, which in turn is composed of species,
parameter and reaction objects. These objects have properties and methods
associated with them, which you use to access and configure them. Use the
get method to list the property values of an object. Use the set method to
change the property values of an object.

SimBiology objects are handle objects, which has implications for how they
behave during copy operations. In particular, handle objects do not behave as
arrays of doubles do in MATLAB®. To learn how handle objects affect copy
operations, see Copying Objects in the MATLAB Programming Fundamentals
documentation.

Model Object

A model object represents a model and is composed of quantities and
expressions. Quantities represent the state variables in the system while
expressions depict the relationships between quantities and therefore describe
the dynamics of the model.

For information about... See...

Creating a model sbiomodel

Methods and properties of a model model object

Removing models from MATLAB clear
Workspace
Deleting models sbioreset

Objects Representing Quantities
The following objects represent quantities in a model:

¢ Compartment

® Species
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e Parameter

Scoping of Compartments, Species, and Parameters
Scoping refers to which object another object is contained in. Scoping affects
compartments, species, and parameters.

¢ Compartment Object — A compartment is scoped to (or contained in)
a model or another compartment.

® Species Object — Although a model can contain multiple compartments,
each species is scoped to (or contained in) only one compartment.

¢ Parameter Object — A parameter is scoped to (or contained in) a model
or a kinetic law.

Naming of Compartments and Species
Note the following when naming objects within a model:

e Compartment names must be unique within a model.

Compartment Object

A compartment object represents a compartment, which is a physically
1solated region. It lets you associate pools of species to that physically isolated
region. It has a capacity associated with it.

All models must contain at least one compartment. A compartment is scoped
to a model or another compartment. A compartment contains one or more

species. Each compartment within a model must have a unique name.

You can add a compartment explicitly (using the addcompartment method) or
add a reaction (using the addreaction method) to create a compartment.

1-9
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For information about... See...

Creating and adding a compartment | addcompartment, addreaction
to a model

Methods and properties of a compartment object
compartment

Species Object

A species object represents a species, which is the amount of a chemical
or entity that participates in reactions. A species is always scoped to a
compartment. Each species must

When adding species to a model with multiple compartments, you must
specify qualified names, using compartmentName.speciesName. For example,
nucleus.DNA denotes the species DNA in the compartment nucleus.

For information about... See...

Creating and adding a species to a addspecies
model

Methods and properties of a species | species object

How Species Amounts Change During Simulations

The amount of a species can remain constant or vary during the simulation of
a model. Use the following properties of a species object to specify how the
amount of a species changes during a simulation:

® ConstantAmount property — When set to true, the species amount does
not change during a simulation. The species can be part of a reaction or
rule, but the reaction or rule cannot change its amount. When set to false,
the species amount is determined by a reaction or a rule, but not both.

® BoundaryCondition property — When set to true, the species amount is
either constant or determined by a rule, but not determined by a chemical
reaction. In other words, the simulation does not create a differential rate
term from the reactions for this species, even if it is in a reaction, but it can
have a differential rate term created from a rule.
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Keeping a Species Amount Unchanged

Set ConstantAmount to true and BoundaryCondition to false for a constant
species, whose amount is not changed by a reaction or rule. In this case, the
species acts like a parameter. It cannot be in a reaction, and it cannot be
varied by a rule.

ConstantAmount BoundaryCondition Reaction | Rule Changed By

True False No No Never

Example — Species E is not part of the reaction, but it is part of the reaction
rate equation. E is constant and could be replaced with the constant Vm
= k2*E.

reaction: S -> P
reaction rate: kcat*E*S/(Km + S)

Changing a Species Amount with a Reaction or Rule

Set ConstantAmount to false and BoundaryCondition to false for a species
whose amount is changed by a reaction or rule, but not both.

ConstantAmount BoundaryCondition Reaction | Rule Changed By
False False Yes No Reaction
False False No Yes Rule

Example 1 — Species A is part of a reaction, and it is in the reaction rate
equation. The species amount or concentration is determined by the reaction.
This is the most common category of a species. A differential rate equation for
the species is created from the reactions.

reaction: A -> B
reaction rate: k*A

Example 2 — Species E is not part of the reaction, but it is in the reaction
rate equation. E varies with another reaction or rule.

reaction: S -> P
reaction rate: kcat*E*S/(Km + S)
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Example 3 — Species G is not part of a reaction, and it is not in a rate
equation. G varies with an algebraic rule or rate rule.

rate rule: dG/dt = k

Changing a Species Amount with a Rule When Species is Part
of a Reaction

Set ConstantAmount to false and BoundaryCondition to true for a species
whose amount is changed by a rule, but the species is also part of a reaction,
and a differential rate term from the reaction is not created. The amount of
the species changes with the rule, and a differential rate term is created
from the rule.

ConstantAmount

BoundaryCondition Reaction | Rule Changed By

False

True Yes Yes Rule

Example 1 — Species A is not changed by the rate equation, but changes
according to a rate rule. However, A could be in the rate equation that
changes other species in the reaction.

reaction: A -> B
reaction rate: ki or ki1*A
rate rule: dA/dt = k2*A (solution is A = k2*t)
(enter in SimBiology as A = k2*A)

Example 2 — Species A is not in the rate equation, but changes according
to an algebraic rule.

reaction: A -> B + C
reaction rate: k or k*A
algebraic rule: A = 2*C
(enter in SimBiology as 2*C - A)

Keeping a Species Amount Unchanged When Species is Part of
a Reaction that Adds or Removes Mass

Set ConstantAmount to false and BoundaryCondition to true for a constant
species that is part of a reaction, but a differential rate term is not created
from the reaction. The differential rate term is created from a rule.
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ConstantAmount BoundaryCondition Reaction | Rule Changed By

True True Yes No Never

During simulation, a differential rate equation is not created for the species.
dSpecies/dt does not exist.

Example 1 — Aisa infinite source and its amount does not change. B
increases with a zero order rate (k and k*A are both constants). A source
refers to a species where mass is added to the system.

reaction: A -> B
reaction rate: k or k*A

Example 2 — B decreases with a first-order rate, but A is an infinite
sink and its amount does not change. A sink refers to a species where mass
is subtracted from the system.

reaction: B -> A
reaction rate: k*B

Example 3 — The null species is a reserved species name that can act as a
source or a sink.

reaction: null -> B
reaction rate: k

reaction: B -> null
reaction rate: k*B

Example 4 — ATP and ADP are in the reaction and have constant values,
but they are not in the reaction rate equation.

reaction: S + ATP -> P + ADP
reaction rate: Vm*S/(Km + S)

Parameter Object

A parameter object represents a parameter, which is a value that typically
remains constant during a simulation. For example, you use parameters to
define reaction rate constants. In some circumstances it is useful to allow
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parameter values to vary. In these cases you can specify a parameter as
nonconstant.

For information about... See...

Creating and adding a parameter to | addparameter

a model

Methods and properties of a parameter object
parameter

Scope of Parameter Objects
When you create a parameter, you scope it to either a model or a reaction.

Parameters Scoped to a Model. Parameters scoped to a model can be
used (or referenced) by any expression (reaction, rule, or event) in the model.

Parameters Scoped to a Reaction. Parameters scoped to a reaction can be
used (or referenced) by only the reaction rate expression.

Objects Representing Expressions

The following objects represent expressions in a model:

® Reaction object
¢ KineticLaw object
¢ Rule object

¢ Event object

When Reactions, Rules, and Events Specify Parameters
Reactions, rules and events can specify one or more parameters. A parameter
is scoped a model or a kinetic law. Note the following when using a reaction,
rule, or event to specify a parameter:

* When a reaction specifies a parameter, the parameter can be scoped to the
model or the kinetic law that is part of that reaction. If more than one
reaction specifies the same parameter, the parameter must be scoped to the
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model. If two parameters have the same name, one at the model level and
the other at the kinetic law level, the software uses the parameter at the
kinetic law level for the reaction rate that specifies the parameter.

® When a rule specifies a parameter, the parameter must be scoped to the
model.

® When an event specifies a parameter, the parameter must be scoped to
the model.

For more information, see “Scope of Parameter Objects” on page 1-14.

Reaction Object

A reaction object represents a reaction, which is a mathematical
expression and other information that describe a transformation, transport,
or binding process that changes one or more species. Typically, the change is
to the amount of a species.

A reaction object includes:

® Reaction property — Mathematical expression that describes the reaction

® ReactionRate property — Mathematical expression that defines the rate
at which the reactants combine to form products. You can provide this
information explicitly or use the KineticLaw property to populate this
information.

e KineticLaw property — Object that specifies a rate law that defines the
type of reaction rate. Examples include Henri-Michaelis-Menten and
Mass Action. The object also specifies species objects, or parameter
objects. This property is optional. It serves as a template for a reaction
rate and provides a convenient way of applying a specific rate law to
multiple reactions. If you use this property, it automatically populates
the ReactionRate property.

A reaction is scoped to a model.
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For information about... See...

Creating and adding a reaction to a | addreaction
model

Methods and properties of a reaction | reaction object

Creating and adding a kinetic law to | addkineticlaw
a reaction

Methods and properties of a kinetic | KineticLaw object
law

Writing Reaction Expressions

Use any valid MATLAB code to create the mathematical expression for a

reaction (Reaction property of a reaction object). The reaction can specify
species.

Following are rules for writing reaction expressions:

¢ Use spaces before and after species names and stoichiometric values.
® Stoichiometry values must be positive.
e [f a stoichiometry value is not specified, it is assumed to be 1.

¢ In a model with a single compartment, specify species using speciesName.
In a model with multiple compartments, specify species using qualified
names: compartmentName.speciesName. For example, nucleus.DNA
denotes the species DNA in the compartment nucleus.

® Enclose names with non-alphanumeric characters (including spaces) in
brackets.

Examples of reaction expressions include:

Creatine + ATP <-> ADP + phosphocreatine

glucose + 2 ADP + 2 Pi -> 2 lactic acid + 2 ATP + 2 H20
cytoplasm.A -> nucleus.A

[compartment 1].[species A] -> [compartment 2].[species A]
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Writing Reaction Rate Expressions Explicitly

Use any valid MATLAB code to create the mathematical expression for a
reaction rate (ReactionRate property of a reaction object). The reaction
rate can specify compartments, species, or parameters.

For example, if you have the following reaction expression:

Creatine + ATP <-> ADP + phosphocreatine

and the reaction follows Mass Action kinetics, then the reaction rate
expression would be:

K*Creatine*ATP - Krev*ADP*phosphocreatine

Tip If your reaction rate expression is not continuous and differentiable,
see “Using Events to Address Discontinuities in Rule and Reaction Rate
Expressions” on page 1-34 before simulating your model.

Creating Reaction Rate Expressions Using Kinetic Law Objects
A KineticLaw object is scoped to a reaction and specifies:

® A rate law that defines the type of reaction rate. Examples include
Henri-Michaelis-Menten and Mass Action.

® gpecies and parameters

A KineticLaw object serves as a template for a reaction rate and provides a

convenient way of applying a specific rate law to multiple reactions. You can

use this object to create a reaction rate, which populates the ReactionRate
property of the reaction object.

For example, if you create a KineticLaw object that specifies

Henri-Michaelis-Menten for the KineticLawName, species S, and parameters
Vm and Km, the reaction rate law is:

V., *S/K,, +8S)
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Then if you create a reaction object that specifies the previous KineticLaw
object and species the following reaction expression:

A ->B

with Vm = Va and Km = Ka and S = A, then the reaction rate equation is:

Va*A/(Ka + A)

Examples of Creating Reaction Rates

Example of Creating a Zero-Order Reaction. With a zero-order reaction,
the reaction rate does not depend on the concentration of reactants. Examples
of zero-order reactions are synthesis from a null species, and modeling a
source species that is added to the system at a specified rate.

reaction: null -> P
reaction rate: k mole/second
species: P = 0 mole
parameters: k = 1 mole/second

Note When specifying a null species, the reaction rate must be defined in
units of amount per unit time not concentration per unit time.

Entering the reaction above into the software and simulating produces the
following result:
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Zero-Order Mass Action Kinetics

Note If the amount of a reactant with zero-order kinetics reaches zero before
the end of a simulation, then the amount of reactant can go below zero
regardless of the solver or tolerances you set.

Examples of Creating Other Reactions. For examples of creating other
reaction rates, see the following sections in Appendix A, “Creating Reaction
Rates”.

¢ “Defining Reaction Rates with Mass Action Kinetics” on page A-2

¢ “Defining Reaction Rates with Enzyme Kinetics” on page A-8

How Reaction Rates Are Evaluated

Reaction Rate Dimensions. When calculating species fluxes, SimBiology
must determine whether you specified reaction rates in dimensions of

amount/time or concentration/time. When all compartments in a model have
a capacity of one unit, amount and concentration are numerically equivalent.
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For all other models, the numerical results of the simulation depend on
which interpretation SimBiology selects. SimBiology determines whether
a reaction rate is in dimensions of amount/time or concentration/time via
dimensional analysis of ReactionRate expressions. This minimum level of
dimensional analysis always occurs, even when DimensionalAnalysis and
UnitConversion are off.

The DefaultSpeciesDimension property defines the dimensions of species
appearing in a reaction rate. SimBiology infers the dimensions of parameters
appearing in a reaction rate from their ValueUnits property. If any
parameters appearing in a reaction rate expression do not have units,
SimBiology interprets the reaction rate in dimensions of amount/time.
Therefore, the only way to specify that a reaction rate has dimensions of
concentration/time is to assign appropriate units to all parameters.

Reactions Spanning Multiple Compartments . Specify reactions that
span compartments using the syntax compartment1Name.species1Name —>
compartment2Name.species2Name. The reaction rate dimensions must resolve
to amount/time when:

® Species span multiple compartments.

® The reaction is reversible mass action and the products are in multiple
compartments.

Examples. Consider a reactiona + b > c. Using mass action kinetics,
the reaction rate is k*a*b, where k is the rate constant of the reaction. If
you specify that initial amounts of a and b are 0.01 molarity and 0.005
molarity respectively, then the reaction rate is in concentration/time (and
units of molarity/second) if the units of k are 1/ (molarity*second).

If you specify k with another equivalent unit definition, for example,
1/((moles/liter)*second), SimBiology checks whether the physical
quantities match. If the physical quantities do not match, you see an error
and the model is not simulated.

If, in the previous example, you specify that initial amounts of a and b are
0.01 and 0.005 respectively, without specifying units, SimBiology checks
whether DefaultSpeciesDimension is substance or concentration. If
DefaultSpeciesDimension is concentration, and you set units on the rate
constant such that the reaction rate dimensions resolve to concentration/time,
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SimBiology scales the species amounts for compartment capacity, and returns
the species values in concentration.

If you specify initial amounts of a and b as 0.01 molarity and 0.005

mole respectively, include the volume scaling for b in the reaction rate
expression. Include volume scaling in the rate constant, and set the units of
the rate constant accordingly (1/(mole*second) for concentration/time, or
1/(molarity*second) for amount/time).

Rule Object

A rule object represents a rule, which is a mathematical expression that
modifies one of the following:

e Compartment capacity

® Species amount

® Parameter value

A rule 1s scoped to a model. A rule has a RuleType property that specifies one
of the following four types of rules:

e Algebraic

e Initial Assignment

® Repeated Assignment

* Rate

For information about... See...
Creating and adding a rule to a addrule
model

Methods and properties of a rule rule object

Writing Rule Expressions

Use any valid MATLAB code to create the mathematical expression for a rule.
The rule can specify compartments, species, or model-scoped parameters.
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Tip

¢ If you plan to specify a parameter in a rule, set the scope of the parameter
to the model.

e If you use an algebraic or rate rule to vary the value of a parameter during
the simulation, make sure the ConstantValue property of the parameter
is set to false.

e [f your algebraic, repeated assignment, or rate rule expression is not
continuous and differentiable, see “Using Events to Address Discontinuities
in Rule and Reaction Rate Expressions” on page 1-34 before simulating
your model.

Algebraic Rules

An algebraic rule lets you specify mathematical constraints on one or more
compartments, species, or parameters that must hold during a simulation.
It is evaluated continuously during a simulation.

An algebraic rule takes the form 0 = Expression and the rule is specified as
the Expression.

For example, you could write a mass conservation expression such as
species_total = speciesi + species2 where species_total is the
independent variable. In SimBiology, write the rule as species1 + species2
- species_total.

An algebraic rule is a convenient way to define mathematical relationships
between states. A model can consist of a combination of differential and
algebraic relationships.

An algebraic rule is a constraint that is enforced by the solver during
simulation. You can use algebraic rules to specify the dynamics for
parameters, species, and compartments that are not driven by one or more
reactions. The accuracy of the solution depends on the tolerance specified in
the Configset object, which defines the simulation settings.

An algebraic rule is defined by the equation:
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f(t,x)= 0

Where t is simulation time. The variable x is species amount, parameter
value, or compartment capacity.

An example of an algebraic rule is:

x*log(x) - 3

Considerations When Imposing Constraints. Consider the mathematical
constraint y = m*x - c. In the software this rule is written as m*x - ¢ -

y. If you want to use this rule to determine the value of y, then m, x, and ¢
must be variables or constants whose values are known or determined by
other equations. In general, the degree of freedom available must match

the number of constraints. Therefore, you must ensure that the equation is
not overconstrained or underconstrained. In this example, if the equation is
underconstrained, it is unclear which variable is being determined by the
expression.

Initial Assignment Rules

An initial assignment rule lets you specify the initial value of a compartment
capacity, species amount, or parameter value as a function of other component
values in the model. It is evaluated once at the beginning of a simulation.

An initial assignment rule is expressed as Variable = Expression.

For example, you could write an initial assignment rule to set the initial
amount of speciesi to be proportional to species2:

speciesl = Kk*species2

Repeated Assignment Rules

A repeated assignment rule lets you specify a value that holds at all times
during simulation, and is a function of other component values in the model.
It is evaluated at every time-step during a simulation. These time steps are
determined by the solver during the simulation process.

A repeated assignment rule is expressed as Variable = Expression.
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For example, if you want the capacity of a compartment (cytoplasm) to change
1n response to a change in the concentration of a species (x), write a repeated
assignment rule to set the capacity of cytoplasm to be proportional to x.

cytoplasm = k*x
Where k is a specified constant parameter.

Repeated Assignment Versus Algebraic Rules. Repeated assignment
rules are mathematically equivalent to algebraic rules, but result in exact
solutions, compared to algebraic rules whose accuracy depends on the
tolerance specified in the Configset object, which defines the simulation
settings.

Tip

e If you can solve for the variable, use a repeated assignment rule instead
of an algebraic rule.

* In repeated assignment rules, the constrained variable is explicitly defined
as the left-hand side, whereas in algebraic rules it is inferred from the
degrees of freedom in the system of equations. See also “Considerations
When Imposing Constraints” on page 1-23.

Rate Rules

A rate rule lets you specify the time derivative of a compartment capacity,
species amount, or parameter value. It is evaluated continuously during a
simulation.

A rate rule is determined by dvVariable/dt = Expression, which is
expressed in the software as Variable = Expression. For example, to define
the rate of change in the quantity of species3 (dspecies3/dt), write the
rule in the software as:

species3 = k * (speciesl + species2)
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One example of a rate rule is when species1 is at the boundary of the
system, but the rate of input of species1 to the system can be determined by
a rate rule.

A rate rule 1s defined by the equation:
dx/dt = f(t,W)

The variable x can be a species amount, parameter value, or compartment
capacity. The function f (W) is an expression that can include other species
and parameters. Enter a rate rule using the form

x = f(t,W)

Examples of Creating Rate Rules

Example of Creating a Rate Rule When the Rate of Change Is
Constant. You can increase or decrease the amount or concentration of a
species by a constant value using a zero-order rate rule. For example, suppose
species C increases by a constant rate k.

reaction: none
rate equation: none
rate rule: dc/dt = k
species : ¢ = 10 mole(initial amount)
parameters: k = 1 mole/second

The analytical solution is ¢ = kt + ¢_, where ¢, is the initial amount or
concentration of the species c.

Enter the rule described above as ¢ = k. Set the RuleType property to rate,
enter the values for ¢ and k, and then simulate.
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Alternatively, you could model a constant increase in a species using Mass
Action reaction null -> C.

Examples of Creating Other Rate Rules. For examples of creating other
rate rules, see the following sections in Appendix B, “Creating Rate Rules”:
¢ “Using Rate Rules When the Rate of Change Is Exponential” on page B-4

¢ “Using Rate Rules When the Rate of Change Is Determined by Another
Species ” on page B-6

¢ “Using Rate Rules To Express Differential Rate Equations as Rules” on
page B-8

Event Object

An event object represents an event, which is a discrete transition in value
of a quantity or expression in a model. This discrete transition occurs when a
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user-specified condition becomes true. The condition can be a specific time or
a time-independent condition.

An event is scoped to a model.

For information about... See...
Creating and adding an event to a addevent
model

Methods and properties of a event event object

For an example of creating and using an event in a model, see “Example —
Creating A Model That Changes a Species Amount Using an Event” on page
1-39.

Event Triggers

An event has a Trigger property that specifies a condition that must be true
to trigger the event to execute.

Typical event triggers are:

® A specific time during simulation — Specify that the event must change
the amounts or values of species or parameters. For example, at time = 5 s,
increase the amount of an inhibitor species above the threshold to inhibit a
given reaction.

® In response to state or changes in the system — Change amounts/values
of certain species/parameters in response to events that are not tied
to any specific time. For example, when species A reaches an amount
of 30 molecules, double the value of reaction rate constant k; or when
temperature reaches 42 C, inhibit a particular reaction by setting its
reaction rate to zero.

Event Functions

An event has an EventFcns property that specifies what occurs when the
event is triggered. Event functions can range from simple to complex. For
example, an event function might:
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® Change the values of compartments, species, or parameters.

e Double the value of a reaction rate constant.

Specifying Event Triggers

The Trigger property of an event specifies a condition that must become
true for an event to execute. Typically, the condition uses a combination of
relational and logical operators to build a trigger expression.

A trigger can contain the keyword time and relational operators to trigger an
event that occurs at a specific time during the simulation. For example, time
>= x. For more information see the Trigger property reference page.

MATLAB uses specific operator precedence to evaluate trigger expressions.
Precedence levels determine the order in which MATLAB evaluates an
expression. Within each precedence level, operators have equal precedence
and are evaluated from left to right. To find more information on how
relational and logical operators are evaluated see “Operators” in the MATLAB
Programming Fundamentals documentation.

Some examples of triggers are:

Trigger Explanation

"(time >=5) && Execute the event when the following

(speciesA<1000)" condition becomes true:Time is greater
than or equal to 5, and speciesA is less
than 1000.

Tip Using a && (instead of &) tells the
software to evaluate the first part of the
expression for whether the statement
is true or false, and skip evaluating the
second statement if this statement is
false.
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Trigger Explanation

"(time >=5) || Execute the event when the following

(speciesA<1000) " condition becomes true: Time is greater
than or equal to 5, or if speciesA is less
than 1000.

'(s1 >=10.0) || (time>= 250) | Execute the event when the following

|
&& (s$2<5.0E17) condition becomes true: Species, s1 1s
greater than or equal to 10.0 or, time
is greater than or equal to 250 and

species s2 is less than 5.0E17.

Because of operator precedence the
expression is treated as if it were
‘(s1 >=10.0) || ((time>= 250) &&
(s2<5.0E17) )"

Thus, it 1s always a good 1dea to use
parenthesis to explicitly specify the
intended precedence of the statements.

"((s1 >=10.0) || (time>= Execute the event when the time
250)) && (s2<5.0E17)' the following condition becomes true:
Species, s1 is greater than or equal to
10 or time is greater than or equal to
250, and species s2 is less than 5.0E17.

"((s1 >=5000.0) && (time>= Execute the event when the time
250)) || (s2<5.0E17)' the following condition becomes true:
Species, s1 is greater than or equal to
5000 and time is greater than or equal
to 250, or species s2 is less than 5.0E17.

Specifying Event Functions

The EventFcns property of an event specifies what occurs when the event
is triggered. You can use an event function to change the value of a
compartment, species, or parameter, or you can specify complex tasks by
calling a user-defined function or script.

An event function is either a single valid MATLAB expression (without ’;” in
the expression) or a cell-array of single valid MATLAB expressions.
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Some examples of event functions include:

EventFcn Explanation

'speciesA = speciesB' When the event is executed set the
amount of speciesA equal to that of
speciesB.

'k = k/2' When the event is executed halve the
value of the rate constant k.

{'speciesA = speciesB', 'k = | When the event is executed set the

k/2'} amount of speciesA equal to that of

speciesB, and halve the value of the
rate constant k.

'kC = my_ func(A, B, kC)' When the event is executed call the
user-defined function my func().

This function takes 3 arguments: The
first two arguments are the current
amounts of two species (A and B) during
simulation and the third argument is
the current value of a parameter, kC.
The function returns the modified value
of kC as its output.

Simulation Solvers for Models Containing Events

To simulate models containing events, use the deterministic sundials solver
or the stochastic ssa solver. Other solvers do not support events. For more
information, see “SUNDIALS Solvers” on page 3-6 and “Stochastic Solvers”
on page 3-6.

How Events Are Evaluated

Consider the example of a simple event where you specify that at 4s, you want
to assign a value of 10 to species A.
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At time = 4 s the trigger becomes true and the event executes. In the figure
above assuming that 0 is false and 1 is true, when the trigger becomes true,
the amount of species A is set to 010. In theory, with a perfect solver, the
event would be executed exactly at time = 4.00 s. In practice there is a very
minute delay (for example you might notice that the event is executed at time
= 4.00001 s). Thus, you must specify that the trigger can become true at

or after 4s, which is time >= 4 s.

Trigger EventFcn
time >= 4 A =10

The point at which the trigger becomes true is called a rising edge. SimBiology
events execute the EventFcn only at rising edges.

The Trigger is evaluated at every time step to check whether the condition

specified in the trigger transitions from false to true. The solver detects and
tracks falling edges, which is when the trigger becomes false, so if another
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rising edge 1s encountered, the event is executed again. If a trigger is already
true before a simulation starts, then the event does not execute the at the
start of the simulation. The event is not executed until the solver encounters
a rising edge. Very rarely, the solver might miss a rising edge; one example of
this i1s when a rising edge follows very quickly after a falling edge, and the
step size results in the solver skipping over the transition point.

If the trigger becomes true exactly at the stop time of the simulation, the
event may or may not execute. If you want the event to execute, increase
the stop time.

Note Since the rising edge is instantaneous and changes the system state,
there are two values for the state at the same time. The simulation data thus
contains the state before the event and after the event, but both points are
at the same time value. This leads to multiple values of the system state

at a single instant in time.

Evaluation of Simultaneous Events

When two or more trigger conditions simultaneously become true, the solver
executes the events sequentially in the order in which they are listed in the
model. You can reorder events using the reorder method. For example,
consider a case where:

Event Trigger EventFcn
Number

1 SpeciesA >= 4 SpeciesB = 10
2 SpeciesC >= 15 SpeciesB = 25

The solver tries to find the rising edge for these events within a certain level
of tolerance. If this results in the two events occurring simultaneously, then
the value of SpeciesB after the time step in which these two events occur, will
be 25. If you reorder the events to reverse the event order, then the value of
SpeciesB after the time step in which these two events occur, will be 10.
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Consider an example in which you include event functions that change model
components in a dependent fashion. For example, the event function in Event
2 below, stipulates that SpeciesB takes the value of SpeciesC.

Event Trigger EventFcn

Number

1 SpeciesA >= 4 SpeciesC = 10

2 time >= 15 SpeciesB = SpeciesC

Event 1 and Event 2 may or may not occur simultaneously.

e [f Event 1 and Event 2 do not occur simultaneously, when Event 2 is
triggered, SpeciesB is assigned the value that SpeciesC has at the time
of the event trigger.

¢ [f Event 1 and Event 2 occur simultaneously, the solver executes Event 1
first, then executes Event 2. In the above example, if SpeciesC = 15 when
the events are triggered, after the events are executed, SpeciesC = 10
and SpeciesB = 10.

Evaluation of Multiple Event Functions

Consider an event function in which you specify that the value of a model
component (SpeciesB) is dependent on the value of model component
(SpeciesA), but SpeciesA also is changed by the event function.

Trigger EventFcn
time >= 4 {'SpeciesA = 10, SpeciesB =
SpeciesA'}

The solver stores the value of SpeciesA at the rising edge and before any
event functions are executed and uses this stored value to assign SpeciesB
its value. So in the above example if SpeciesA = 15 at the time the event is
triggered, after the event is executed, SpeciesA = 10 and SpeciesB = 15.

When One Event Triggers Another Event

In the example below, Event 1 includes an expression in the event function
that causes Event 2 to be triggered, (assuming that SpeciesA has amount less
than 5 when Event 1 is executed).
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Event Trigger EventFcn

Number

1 time >= 5 {'SpeciesA = 10, SpeciesB = 5'}
2 SpeciesA >= 5 SpeciesC = SpeciesB

When Event 1 is triggered, the solver evaluates and executes Event 1 with
the result that SpeciesA = 10, and SpeciesB = 5. Now, the trigger for
Event 2 becomes true (assuming that SpeciesA is below 5) and the solver
executes the event function for Event 2. Thus, SpeciesC = 5 at the end of
this event execution.

You can thus have event cascades of arbitrary length, for example, Event 1
triggers Event 2, which in turn triggers Event 3, and so on.

Cyclical Events

In some situations, a series of events can trigger a cascade that becomes
cyclical. Once you trigger a cyclical set of events, the only way to stop the
simulation is by pressing Ctrl+C. You lose any data acquired in the current
simulation. An example of cyclical events is shown below. This example
assumes that Species B <= 4 at the start of the cycle.

Event Trigger EventFcn

Number

1 SpeciesA > 10 {SpeciesB = 5, SpeciesC = 1'}
2 SpeciesB > 4 {SpeciesC = 10, SpeciesA = 1'}
3 SpeciesC > 9 {SpeciesA = 15, SpeciesB = 1'}

Using Events to Address Discontinuities in Rule and Reaction
Rate Expressions

The solvers provided with the SimBiology software will give inaccurate results
when the following expressions are not continuous and differentiable:

® Repeated assignment rule

® Algebraic rule
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® Rate rule
® Reaction rate
Either ensure that the previous expressions are continuous and differentiable

or use events to reset the solver at the discontinuity, as described in
Deterministic Simulation of a Model Containing a Discontinuity.

Objects Representing Model Modifiers

Variant Object

A variant object represents a variant, which is an alternate value for a
compartment, species, or parameter in a model. You can apply this alternate
value during a simulation, which lets you evaluate model behavior with a
different value, without having to search and replace the value, or create an
additional model with the new value.

You can use a variant to store an alternate value for any of the following:

¢ Compartment Capacity property

® Species InitialAmount property

® Parameter Value property

The alternate value applies temporarily, only during a simulation, and does
not alter the model’s values permanently. If you determine that the values

in a variant accurately define your model, you can permanently replace the

values in your model with the values stored in the variant object by using the
commit method.

Creating and Using Variants

1 Create a variant object and add it to a model using the addvariant
method.

2 (Optional) Set the Active property of the variant object to true if you
always want the variant to be applied before simulating the model.
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3 Enter the model and variant object as input arguments to sbiosimulate.
This applies the variant only for the current simulation and supersedes any
active variant objects on the model.

or

If you followed step 2, simply call sbiosimulate on the model object to
apply the variant.

For an example of creating and using a variant in a model, see “Example
— Creating A Model That Changes a Parameter Value Using a Variant”

on page 1-44.
For information about... See...
Creating and adding a variant to a addvariant
model
Creating a stand-alone variant sbiovariant

Methods and properties of a variant | Variant object

Appending contents to variants addcontent

Replacing model values permanently | commit
with values from a variant

Applying Multiple Variants in a Model

When you use multiple variants during a simulation, and there are duplicate
specifications for a property’s value, the last occurrence for the property value
in the array of variants is used during simulation. You can find out which
variant is applied last by looking at the indices of the variant objects stored
on the model.

If you specify variants as arguments to sbiosimulate, this applies the
variants for the current simulation in the order that they are specified, and
supersedes any active variant objects on the model.

Similarly, in the variant contents (Content property), if there are duplicate

specifications for a property’s value, the last occurrence for the property in the
contents is used during simulation.
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Dose Object

A dose object represents one or more increases to the amount of a species
during a model simulation. It lets you increase the amount of a species during
a simulation, either at specific times or time intervals. The increase in the
amount of a species occurs only during a simulation, and does not alter the
species’ value permanently.

For example, you can use a dose to represent the addition of a drug to a model
every two hours.

There are two types of dose objects:

e ScheduleDose object — Applies a dose to a single species at a pre-defined
list of times.

® RepeatDose object — Repeatedly applies a dose to a single species at
regularly spaced time intervals.

Repeat doses and schedule doses support three kinds of increases to species
amounts:

¢ Instantaneous increase (or step change) in the amount of a species

¢ Increase at a fixed rate over a period of time calculated from the dose
amount

e Increase at a fixed rate calculated from the dose amount and dose duration

By using repeat doses and schedule doses with SimBiology models, you can
easily model common dosing strategies, such as bolus, infusion, zero-order
absorption, and first-order absorption.

Creating and Using Dose Objects Associated With a Model

1 Create a dose and add it to the model using the adddose method.

2 Configure the properties of the dose. For example, set the TargetName
property to the name of the species in the model that will receive the dose.
Set the Active property to true to use it during a simulation.

3 Enter the model as an input argument to sbiosimulate to apply the dose.
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SimBiology will simulate the model using all active doses associated with

the model.
For information about... See...
Creating and adding a dose to a adddose
model
Creating a stand-alone dose sbiodose
Methods and properties of a dose ScheduleDose object and
RepeatDose object
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Example — Creating A Model That Changes a Species
Amount Using an Event

In this section...

“Overview” on page 1-39
“Opening the Example Model” on page 1-40
“Adding an Event to the Example Model” on page 1-40

“Simulating the Model” on page 1-41

Overview

About the Example Model

This example uses the model described in Model of the Yeast Heterotrimeric
G Protein Cycle.

This table shows the reactions used to model the G protein cycle and the
corresponding rate parameters (rate constants) for each reaction. For
reversible reactions, the forward rate parameter is listed first.

No., Name Reaction’ Rate
Parameters

1 Receptor-ligand L +R <->RL kRL, kRLm
interaction

2 Heterotrimeric G protein | Gd + Gbg -> G kG1
formation

3 | G protein activation RL + G -> Ga + Gbg + RL kGa

4 Receptor synthesis and R <-> null kRdo, kRs
degradation

5 Receptor-ligand RL -> null kRD1
degradation
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1-40

No. Name Reaction! Rate
Parameters
6 G protein inactivation Ga -> Gd kGd

I Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd
= inactive G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G =
inactive Gbg:Gd complex, Ga = active G-alpha-GTP

About the Example

This example shows how to add an event to a model to trigger a time-based
change. The event modifies the amount of ligand (L), thus modeling a delay in
the addition of a-factor to the cell culture.

For information on events and how they are evaluated, see “Event Object”
on page 1-26.

Opening the Example Model

Load the gprotein example project, which includes the variable m1, a model
object:

sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

Adding an Event to the Example Model

1 Set the InitialAmount of species L (ligand) to be 0.0 when the simulation
starts:

speciesObj = sbioselect(m1, 'Type', 'species', 'Name', 'L');
set(speciesObj, 'InitialAmount', 0);

2 Add an event to the m1 model object. Configure the event to set the amount
of species L (ligand) and to trigger when the simulation time equals 100:

evt = addevent(mi, 'time >= 100', 'L = 6.022E17');
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Simulating the Model

1 Configure the simulation settings (configset object) for the m1 model
object to log all states during the simulation:

cs = getconfigset(mil);
set(cs.RuntimeOptions, 'StatesToLog', 'all');

2 Simulate the model:

[t,x,names] = sbiosimulate(m1);
3 Plot the results:

plot(t,x)

legend(names)
xlabel('Time'); ylabel('Amount');title('All States')
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Notice that the species L amount increases when the event triggers at
simulation time 100. The plot does not show the other species in the model
due to the wide range in species amounts.

4 To see plots of the species with smaller amounts, plot all species except the
5th (species L) and 7th (species Gbg).

figure; plot(t, x(:, [1:4 6 8]))

legend(names{[1:4 6 8]})
xlabel('Time'); ylabel('Amount');title('States with Small Values')
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Notice the increase in the activation of G protein (species Ga, shown in red)
after ligand (species L) is added at simulation time 100.
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Example — Creating A Model That Changes a Parameter
Value Using a Variant

In this section...

“Overview” on page 1-44
“Opening the Example Model” on page 1-45
“Applying an Alternate Parameter Value Using a Variant” on page 1-45

“Simulating the Model With and Without the Variant” on page 1-46

Overview

About the Example Model

This example uses the model described in Model of the Yeast Heterotrimeric
G Protein Cycle.

This table shows the reactions used to model the G protein cycle and the
corresponding rate parameters (rate constants) for each reaction. For
reversible reactions, the forward rate parameter is listed first.

No., Name Reaction’ Rate
Parameters

1 Receptor-ligand L +R <->RL kRL, kRLm
interaction

2 Heterotrimeric G protein | Gd + Gbg -> G kG1
formation

3 | G protein activation RL + G -> Ga + Gbg + RL kGa

4 Receptor synthesis and R <-> null kRdo, kRs
degradation

5 Receptor-ligand RL -> null kRD1
degradation
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No. Name Reaction! Rate
Parameters
6 G protein inactivation Ga -> Gd kGd

I Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd
= inactive G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G =
inactive Gbg:Gd complex, Ga = active G-alpha-GTP

About the Example

This example shows how to apply a variant to a model that contains a
parameter value for a G protein cycle in a wild-type strain. The variant
represents a parameter value for a G protein cycle in a mutant strain. Thus,
when you simulate the model without applying the variant, you see results
for the wild type strain, and when you simulate the model with the variant,
you see results for the mutant strain.

About the Variant Created in This Example

The value of the parameter kGd is 0.11 for the wild-type strain and 0.004 for
the mutant strain. To represent the mutant strain, store an alternate value
of 0.004 for the kGd parameter in a variant. Then apply this variant when
simulating the model.

For information on variants, see “Variant Object” on page 1-35.

Opening the Example Model

Load the gprotein example project, which includes the variable m1, a model
object:

sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

Applying an Alternate Parameter Value Using a
Variant

1 Add a variant to the m1 model object:
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vl = addvariant(mi, 'mutant_strain');

2 Add content to the variant object v1. Specifically, add a parameter kGd
with a value of 0.004:

addcontent(v1l, {'parameter', 'kGd', 'Value', 0.004});

Simulating the Model With and Without the Variant

1 Simulate the model of the wild-type strain, that is by not applying the
variant:

[t,x,names] = sbiosimulate(m1);
2 Plot the results of the wild-type strain (no variant):
plot(t,x)

legend(names)
xlabel('Time'); ylabel('Amount'); title('Wild Type')
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3 Simulate the model of the mutant strain by applying the variant:

[t,x,names] = sbiosimulate(mi, v1);

4 Plot the results of the mutant strain (variant):

figure; plot(t,x)
legend(names)
xlabel('Time'); ylabel('Amount'); title('Mutant')
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Example — Creating A Model That Uses a User-Defined
Function in an Expression

In this section...

“Overview” on page 1-49

“Creating a Custom Function” on page 1-51

“Opening the Example Model” on page 1-52

“Adding the Custom Function to the Example Model” on page 1-52
“Defining a Rule to Affect Parameter Value” on page 1-53

“Adding an Event to Reset the Solver at a Discontinuity” on page 1-53
“Simulating the Modified Model” on page 1-53

“See Also” on page 1-57

Overview

Prerequisites for the Example

This example assumes you have a working knowledge of:
e MATLAB desktop

¢ Creating and saving MATLAB programs

About the Example Model

This example uses the model described in Model of the Yeast Heterotrimeric
G Protein Cycle.

This table shows the reactions used to model the G protein cycle and the

corresponding rate parameters (rate constants) for each reaction. For
reversible reactions, the forward rate parameter is listed first.
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No. Name Reaction' Rate
D maktare

1 Receptor-ligand L + R <->RL KRL, kRLm
Interaction

2 | Heterotrimeric G protein | Gd + Gbg -> G kG1
formation

3 G protein activation RL + G -> Ga + Gbg + RL kGa

4 Receptor synthesis and R <-> null kRdo, kRs
degradation

5 | Receptor-ligand RL -> null kRD1
degradation

6 G protein inactivation Ga -> Gd kGd

I Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd
= inactive G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G =
inactive Gbg:Gd complex, Ga = active G-alpha-GTP

Assumptions of the Example
This example assumes that:

¢ An inhibitor (Inhib species) slows the inactivation of the active G protein
(reaction 6 above, Ga > Gd).

¢ The variation in the amount of inhibitor (Inhib species) is defined in a
custom function, inhibvalex.

¢ The inhibitor (Inhib species) affects the reaction by changing the amount
of rate parameter kGd.

About the Example

This example shows how to create and call a custom function in a SimBiology
expression. Specifically, it shows how to use a custom function in a rule
expression.

About Using Custom Functions in SimBiology Expressions
You can use custom functions in:
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® Reaction rate expressions (ReactionRate property)
® Rule expressions (Rule property)

¢ Event expressions (EventFcns property or Trigger property)
The requirements for using custom functions in SimBiology expressions are:

® (Create a custom function. For more information, see function.

¢ Change the current folder to the folder containing your custom MATLAB
file. Do this by using the cd command or by using the Current Folder field
in the MATLAB desktop toolbar. Alternatively, add the folder containing
your file to the search path. Do this by using the addpath command or see
“Adding Folders to the Search Path”.

e (Call the custom function in a SimBiology reaction, rule, or event expression.

Tip If your rule or reaction rate expression is not continuous and
differentiable, see “Using Events to Address Discontinuities in Rule and
Reaction Rate Expressions” on page 1-34 before simulating your model.

Creating a Custom Function

The following procedure creates a custom function, inhibvalex, which lets
you specify how the inhibitor amount changes over time. The inputs are time,
the initial amount of inhibitor, and a parameter that governs the amount of
inhibitor. The output of the function is the amount of inhibitor.

1 In the MATLAB desktop, select File > New > Script, to open the MATLAB
Editor.

2 Copy and paste the following function declaration:

% inhibvalex.m
function Cp = inhibvalex(t, Cpo, kel)

o°

This function takes the input arguments t, Cpo, and kel
and returns the value of the inhibitor Cp.

You can later specify the input arguments in a
SimBiology rule expression.

o° o°

o°
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o°

For example in the rule expression, specify:

t as time (a keyword recognized as simulation time),

Cpo as a parameter that represents the initial amount of inhibitor,
and kel as a parameter that governs the amount of inhibitor.

o® o°

o°

if t < 400

Cp = Cpo*exp(-kel*(t));
else

Cp = Cpo*exp(-kel*(t-400));
end

3 Save the file (name the file inhibvalex.m) in a directory that is on the
MATLAB search path, or to a directory that you can access.

4 If the location of the file is not on the MATLAB search path, change the
working directory to the file location.

Opening the Example Model

Load the gprotein example project, which includes the variable m1, a model
object:

sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

Adding the Custom Function to the Example Model

The following procedure creates a rule expression that calls the custom
function, inhibvalex, and specifies the three input values to this function.

1 Add a repeated assignment rule to the model that specifies the three input
values to the custom function, inhibvalex:

rulet = addrule(mi, 'Inhib = inhibvalex(time, Cpo, Kel)',...
'repeatedAssignment’');

The time input is a SimBiology keyword recognized as simulation time

2 Create the two parameters used by the rule1 rule and assign values to
them:
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p1 = addparameter(mi, 'Cpo', 25
p2 addparameter(mi, 'Kel', O.

3 Create the species used by the rulei rule:

s1 = addspecies(mi.Compartments, 'Inhib');

Defining a Rule to Affect Parameter Value

The value of rate parameter kGd is affected by the amount of inhibitor present
in the system. Add a rule to the model to describe this action, but first
change the ConstantValue property of the parameter kGd so that it can be
varied by a rule.

1 Change the ConstantValue property of the kGd parameter to false.

p3 = sbioselect(mi, 'Type', 'parameter', 'Name', 'kGd');
set(p3, 'ConstantValue', false)

2 Add a repeated assignment rule to the model to define how the kGd
parameter is affected by the Inhib species.

rule2 = addrule(mi, 'kGd = 1/Inhib', 'repeatedAssignment');

Adding an Event to Reset the Solver at a Discontinuity

The custom function, inhibvalex, introduces a discontinuity in the model
when time = 400. To ensure accurate simulation results, add an event to

the model to reset the solver at the time of the discontinuity. Set the event

to trigger at the time of the discontinuity (time = 400). The event does not
need to modify the model, so create an event function that multiplies a species
value by 1:

addevent(m1, 'time>=400', 'G=1*G');

Simulating the Modified Model

1 Configure the simulation settings (configset object) for the m1 model
object to log all states during the simulation:

cs = getconfigset(mil);
set(cs.RuntimeOptions, 'StatesToLog', 'all')
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2 Simulate the model:

simDataObj = sbiosimulate(m1);

3 Plot the results:

sbioplot(simDataObj)

The plot does not show the species of interest due to the wide range in
species amounts/concentrations.

4 Plot only the species of interest. Ga:

GaSimDataObj = selectbyname(simDataObj, 'Ga');
sbioplot(GaSimDataObj)
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Figure 2
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Notice the change in the profile of species Ga at time = 400 seconds
(simulation time). This is the time when the inhibitor amount is changed to

reflect the re-addition of inhibitor to the model.

5 Plot only the inhibitor (Inhib species):

InhibSimDataObj = selectbyname(simDataObj,

sbioplot(InhibSimDataObj)

"Inhib');
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See Also
To learn about... Refer to...
Functions function in the MATLAB Function

Reference.

Changing the working directory to cd in the MATLAB Function
the directory containing the function | Reference.

file

Adding the directory containing addpath in the MATLAB Function

function files to the MATLAB search | Reference or “Adding Folders to

path the Search Path” in the MATLAB
Desktop Tools and Development
Environment.
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® “Overview of Structural Analysis” on page 2-2

* “Verifying a Model” on page 2-3

¢ “Example — Verifying a Model” on page 2-5

® “Determining Conserved Moieties” on page 2-6

¢ “Example — Determining Conserved Moieties” on page 2-9

¢ “Determining the Adjacency Matrix for a Model” on page 2-13

¢ “Determining the Stoichiometry Matrix for a Model” on page 2-16
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Overview of Structural Analysis

Structural analyses let you verify and investigate the structure of your model
and its quantities and expressions before actually simulating the model.
These static inspections help you to:

¢ Confirm the model is ready for simulation.

® Better understand the relationships between quantities and expressions
in the model.
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Verifying a Model

In this section...
“What is Model Verification?” on page 2-3
“When to Verify a Model” on page 2-3

“Verifying That a Model Has No Warnings or Errors” on page 2-4
“See Also” on page 2-4

What is Model Verification?

SimBiology has functionality that helps you find and fix warnings that you
might need to be aware of, and errors that would prevent you from simulating
and analyzing your model.

Model verification checks many aspects of the model including:

® Model structure
e Validity of mathematical expressions
¢ Dimensional analysis

e Unit conversion issues

When to Verify a Model

You can check your model for warnings and errors at any time when
constructing or working with your model. For example:

¢ Verify your model during construction to ensure that the model is complete.
¢ Verify the model after changing simulation settings, dimensional analysis

settings, or unit conversion settings.

Analyses such as simulation, scanning, and parameter fitting automatically
verify a model.
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Tip Repeatedly running a task using a different variant or setting a different
value for the InitialAmount property of a species, the Capacity property of
a compartment, or the Value property of a parameter, generates warnings
only the first time you simulate a model. Use the verification functionality
described in this section to display warnings again.

Verifying That a Model Has No Warnings or Errors

Use the verify method to see a list of warnings and errors in your model.

Use the sbiolastwarning and sbiolasterror functions to return the last
warning and last error encountered during verification.

See Also

For an example of verifying a model, see “Example — Verifying a Model”
on page 2-5.
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Example — Verifying a Model
1 Create a model with a reaction that references K1, an undefined parameter:

% Create a model named example

model = sbiomodel('example');

% Add a compartment named cell to model

compartment = addcompartment(model, 'cell');

% Add two species, A and B, to the cell compartment

species_1 = addspecies(compartment, 'A');

species_2 = addspecies(compartment, 'B');

% Add the reaction A -> B to the model

reaction = addreaction(model, 'A -> B', 'ReactionRate', 'K1');

2 Verify the model to check for warnings and errors:

verify(model)

??? --> Error reported from Expression Validation:
The name 'K1' in reaction 'A -> B' does not refer to any in-scope species,

parameters, or compartments.

3 Address the error by defining the parameter K1:

% Add a parameter, K1, to the model with a value of 3
parameter = addparameter(model, 'K1', 3);

4 Verify the model again:

verify(model)
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Determining Conserved Moieties

2-6

In this section...

“Introduction to Moiety Conservation” on page 2-6
“Algorithms for Conserved Cycle Calculations” on page 2-6

“See Also” on page 2-8

Introduction to Moiety Conservation

Conserved moieties represent quantities that are conserved in a system,
regardless of the individual reaction rates.

Consider this simple network:

reaction 1: A -> B
reaction 2: B -> C
reaction 3: C -> A

Regardless of the rates of reactions 1, 2, and 3, the quantity A + B + Cis
conserved throughout the dynamic evolution of the system. This conservation
is termed structural because it depends only on the structure of the network,
rather than on details such as the kinetics of the reactions involved. In the
context of systems biology, such a conserved quantity is sometimes referred to
as a conserved moiety. A typical, real-world example of a conserved moiety

is adenine in its various forms ATP, ADP, AMP, etc. Finding and analyzing
conserved moieties can yield insights into the structure and function of a
biological network. In addition, for the quantitative modeler, conserved
moieties represent dependencies that can be removed to reduce a system’s
dimensionality, or number of dynamic variables. In the previous simple
network, in principle, it is only necessary to calculate the time courses for A
and B. After this is done, C is fixed by the conservation relation.

Algorithms for Conserved Cycle Calculations

The sbioconsmoiety function analyzes conservation relationships in a model
by calculating a complete set of linear conservation relations for the species in
the model object.



Determining Conserved Moieties

sbioconsmoiety lets you specify one of three algorithms based on the nature
of the model and the required results:

® 'gqr' —sbioconsmoiety uses an algorithm based on QR factorization. From
a numerical standpoint, this is the most efficient and reliable approach.

® 'rreduce' — sbioconsmoiety uses an algorithm based on row reduction,
which yields better numbers for smaller models. This is the default.

® 'semipos' — sbioconsmoiety returns conservation relations in which
all the coefficients are greater than or equal to zero, permitting a more
transparent interpretation in terms of physical quantities.

For larger models, the QR-based method is recommended. For smaller models,
row reduction or the semipositive algorithm may be preferable. For row
reduction and QR factorization, the number of conservation relations returned
equals the row rank degeneracy of the model object’s stoichiometry matrix.
The semipositive algorithm can return a different number of relations.
Mathematically speaking, this algorithm returns a generating set of vectors
for the space of semipositive conservation relations.

In some situations, you may be interested in the dimensional reduction of
your model via conservation relations. Recall the simple model, presented

in “Introduction to Moiety Conservation” on page 2-6, that contained the
conserved cycle A + B + C. Given A and B, C is determined by the conservation
relation; the system can be thought of as having only two dynamic variables
rather than three. The 'link' algorithm specification caters to this
situation. In this case, sbioconsmoiety partitions the species in the model
into independent and dependent sets and calculates the dependence of the
dependent species on the independent species.

Consider a general system with an n-by-m stoichiometry matrix N of rank Kk,
and suppose that the rows of N are permuted (which is equivalent to permuting
the species ordering) so that the first k rows are linearly independent. The

last n — k rows are then necessarily dependent on the first k rows.

The matrix N can be split into the following independent and dependent parts,
N o (NR)
No
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where R in the independent submatrix N, denotes 'reduced’; the (n — k)-by-k
link matrix LO is defined so that N; = LO*N,. In other words, the link
matrix gives the dependent rows N; of the stoichiometry matrix, in terms

of the independent rows N,. Because each row in the stoichiometry matrix
corresponds to a species in the model, each row of the link matrix encodes how
one dependent species is determined by the k independent species.

See Also
For examples of determining conserved moieties, see:

¢ “Example — Determining Conserved Moieties” on page 2-9

® The demo Finding Conserved Quantities in a Pathway Model
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Example — Determining Conserved Moieties

1 Load the Goldbeter Mitotic Oscillator project, which includes the variable
m1, a model object:

sbioloadproject Goldbeter_Mitotic_Oscillator_with_reactions

The m1 model object appears in the MATLAB Workspace.

2 Display the species information:

m1.Compartments.Species

SimBiology Species Array

Ind
1

- O 0O NO O~ WNMN

0

ex: Compartment: Name: InitialAmount: InitialAmountUnits:

unnamed C 0.01
unnamed M 0.01
unnamed Mplus 0.99
unnamed Mt 1
unnamed X 0.01
unnamed Xplus 0.99
unnamed Xt 1
unnamed Vi1 0
unnamed V3 0
unnamed AA 0

3 Display the reaction information:

mi.Reactions

SimBiology Reaction Array

Index:

NOoO o~ OND =

Reaction:

AA -> C

C -> AA

C+ X ->AA+ X
Mplus + C -> M + C

M -> Mplus
Xplus + M -> X + M
X -> Xplus
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4 Use the simplest form of the sbioconsmoiety function and display the
results. The default call to sbioconsmoiety, in which no algorithm is
specified, uses an algorithm based on row reduction.

[g sp] = sbioconsmoiety(m1)

g:

o o
o =
o =
- o
)
o o

Sp =

o
e
'Mplus'
N
'Xplus'
TAA

The columns in g are labeled by the species sp. Thus the first row
describes the conserved relationship, M + Mplus. Notice that the third row
indicates that the species AA is conserved, which is because AA is constant
(ConstantAmount = 1).

5 Call sbioconsmoiety again, this time specifying the semipositive algorithm
to explore conservation relations in the model. Also specify to return the
conserved moieties in a cell array of strings, instead of a matrix.

cons_rel sbioconsmoiety(m1, 'semipos','p"')

cons_rel
IAAI
'X + Xplus'
'M + Mplus'

6 Use the 'link' option to study the dependent and independent species.
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[SI,SD,LO,NR,ND] = sbioconsmoiety(m1,

7 Show the list of independent species:

SI

SI =
|C|
|M|
|X|

8 Show the list of dependent species:

SD

SD =
"Mplus'
'Xplus'
IAAI

9 Show the link matrix relating SD and SI by converting the LO output from a

sparse matrix to a full matrix:

LO full = full(LO)
LO full =
0 -1.0000 0
0 0 -1.0000
0 0 0

10 Show the independent stoichiometry matrix, N, by converting the NR output

from a sparse matrix to a full matrix:

NR_full = full(NR)
NR_full =
1 -1 -1 0
0 0 0 1

'1ink');

o
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0 0 0 0 0 1 -1

11 Show the dependent stoichiometry matrix, N, by converting the ND output
from a sparse matrix to a full matrix:

ND_full = full(ND)
ND_full =
0 0 o -1 1 0
0 0 0 0 0o -1 1
0 0 0 0 0 0 0
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Determining the Adjacency Matrix for a Model

In this section...

“What Is an Adjacency Matrix?” on page 2-13

“Example — Retrieving an Adjacency Matrix for a Model” on page 2-14

What Is an Adjacency Matrix?

An adjacency matrix lets you easily determine:

® The reactants and products in a specific reaction in a model
® The reactions that a specific species is part of, and whether the species is a
reactant or product in that reaction

An adjacency matrix is an N-by-N matrix, where N equals the total number
of species and reactions in a model. Each row corresponds to a species or
reaction, and each column corresponds to a species or reaction.

The matrix indicates which species and reactions are involved as reactants
and products:

® Reactants are represented in the matrix with a 1 at the appropriate location
(row of species, column of reaction). Reactants appear above the diagonal.

® Products are represented in the matrix with a 1 at the appropriate location
(row of reaction, column of species). Products appear below the diagonal.

e All other locations in the matrix contain a 0.

For example, if a model object contains one reaction equaltoA + B -> C
and the Name property of the reaction is R1, the adjacency matrix is:

1

DO W >

oo oo >
cooow
— 0000

R
1
1
0
0
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Example — Retrieving an Adjacency Matrix for a
Model

Retrieve an adjacency matrix for a model by passing the model object as an
input argument to the getadjacencymatrix method.

1 Read in m1, a model object, using sbmlimport:
m1 = sbmlimport('lotka.xml');

2 Get the adjacency matrix for m1:
[M, Headings] = getadjacencymatrix(mi)

M =

—_
—_

~— e — ~— ~—

—_

Headings =

vy
1

2!

1o
'Reactioni’
'Reaction2'’
'Reaction3’

3 Convert the adjacency matrix from a sparse matrix to a full matrix to more
easily see the relationships between species and reactions:

M_full = full(M)
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M_full =
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Determining the Stoichiometry Matrix for a Model

2-16

In this section...

“What Is a Stoichiometry Matrix?” on page 2-16

“Example — Retrieving a Stoichiometry Matrix for a Model” on page 2-17

What Is a Stoichiometry Matrix?

A stoichiometry matrix lets you easily determine:

¢ The reactants and products in a specific reaction in a model, including the
stoichiometric value of the reactants and products

® The reactions that a specific species is part of, and whether the species is a
reactant or product in that reaction

A stoichiometry matrix is an M-by-N matrix, where M equals the total number
of reactions in a model, and N equals the total number of species in a model.
Each row corresponds to a reaction, and each column corresponds to a species.

The matrix indicates which species and reactions are involved as reactants
and products:

® Reactants are represented in the matrix with their stoichiometric value at
the appropriate location (row of reaction, column of species). Reactants
appear as negative values.

® Products are represented in the matrix with their stoichiometric value
at the appropriate location (row of reaction, column of species). Products
appear as positive values.

e All other locations in the matrix contain a 0.
For example, consider a model object containing two reactions. One reaction

(named R1) isequalto2 A + B -> 3 C, and the other reaction (named R2) is
equaltoB + 3 D -> 4 A. The stoichiometry matrix is:

R1 -2 -1 3 0
R2 4 -1 0 -3




Determining the Stoichiometry Matrix for a Model

Example — Retrieving a Stoichiometry Matrix for a
Model

Retrieve a stoichiometry matrix for a model by passing the model object as
an input argument to the getstoichmatrix method.

1 Read in m1, a model object, using sbmlimport:
m1 = sbmlimport('lotka.xml');

2 Get the stoichiometry matrix for m1:
[M,objSpecies,objReactions] = getstoichmatrix(m1)

M =

objSpecies =

Ly
1
2!
i

objReactions =
'Reactiont’
'Reaction2’

'"Reaction3d’

3 Convert the stoichiometry matrix from a sparse matrix to a full matrix to
more easily see the relationships between species and reactions:
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M_full

M_full

oo —-o0o

Full (M)

- a0 0
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® “Overview of Simulation and Analysis” on page 3-2

® “Simulating Models” on page 3-3

¢ “Example — Simulating a Model and Viewing Results” on page 3-12

¢ “Calculating Sensitivities” on page 3-18

¢ “Example — Calculating Sensitivities” on page 3-22

¢ “Estimating Parameters” on page 3-27

¢ “Example — Estimating Parameters Using sbioparamestim” on page 3-29

e “Accelerating Model Simulations and Analyses” on page 3-41
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Overview of Simulation and Analysis

3-2

In this section...

“Typical Workflow” on page 3-2

“See Also” on page 3-2

After creating models in SimBiology, you can simulate and analyze them.

Typical Workflow

To simulate a model, SimBiology:

1 Converts the model expressions and quantities to a system of differential
equations.

2 Uses deterministic or stochastic solvers to numerically solve these
equations.

3 Determines the changes in species amounts and parameter values over
time.

SimBiology also lets you analyze models. These analyses include a basic
simulation of the model as well as additional evaluations such as:
e (Calculate sensitivities

* Estimate parameters

See Also

There are demos that show you how to use the command line to simulate
and analyze:

¢ To access demos included with the software, see SimBiology Demos.

® To access demos on the Web, see SimBiology Demos and Webinars.


http://www.mathworks.com/products/simbiology/demos.html?show=demo

Simulating Models

Simulating Models

In this section...

“Simulating a Model Using sbiosimulate” on page 3-3

“Plotting Simulation Results” on page 3-4

“Interpreting Simulation Results” on page 3-4

“Configuring Stop Time and Other Simulation Settings” on page 3-4
“Choosing a Simulation Solver” on page 3-5

“SUNDIALS Solvers” on page 3-6

“Stochastic Solvers” on page 3-6

“See Also” on page 3-11

Simulating a Model Using sbiosimulate

Simulate a model by providing the model object as an input argument to
the sbiosimulate function.

When you simulate a model, you can return results (time points, state data,
and state names) in two forms:

® Three separate arrays

® One SimData object

A SimData object also includes metadata such as the types and names for
the logged states, the configuration set used during simulation, and the date
of the simulation. It is a convenient way of keeping time data, state data, and
associated metadata together. A SimData object has associated properties
and methods, which you can use to access and manipulate the data.

For more information on simulating a model, see “Example — Simulating a
Model and Viewing Results” on page 3-12.
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Plotting Simulation Results

If you return time and state data from a simulation in three output
arguments, you can use these arguments as inputs to the plot function to
view your results. For more information, see sbiosimulate.

If you return time and state data from a simulation in a SimData object,
you can use the SimData object as an input to the sbioplot function to
view your results.

For more information on plotting simulation results, see “Example —
Simulating a Model and Viewing Results” on page 3-12.

Interpreting Simulation Results

After running a simulation, you may see negative amounts or concentrations
for species in the results plot or data array. These negative values can be
either:

e Slightly negative due to numerical noise introduced by the simulation
process. In this case, you can interpret these values as 0.

® Significantly negative due to the dynamics in your model not being
physical, that is, the dynamics in the system are driving a particular
species to be negative. In this case, examine your reaction rate expressions
to ensure they implement correct dynamics.

Configuring Stop Time and Other Simulation Settings

A model has a configuration set (configset object) associated with it to
control the simulation. You can edit the properties of a configset object
to control all aspects of the simulation, including:

® Simulation stop time

e Simulation time units

e Simulation solver

e Solver error tolerances

® Maximum time step size (ODE solvers only)

e Data to record

3-4
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® Sensitivity analysis options

e Whether to perform dimensional analysis and unit conversion during
simulation

To view the configset object, provide the model object as an input
argument to the getconfigset method.

To edit the properties of a configset object, use the set method.

For more information on viewing and editing the stop time and other
simulation settings, see “Example — Simulating a Model and Viewing
Results” on page 3-12.

Choosing a Simulation Solver

To simulate a model, the SimBiology software converts a model to a system
of differential equations. It then uses a solver function to compute solutions
for these equations at different time intervals, giving the model’s states and
outputs over a span of time.

Available solvers are:

* ODE Solvers — These include Nonstiff Deterministic Solvers and
Stiff Deterministic Solvers. The solver functions implement numerical
integration methods for solving initial value problems for ordinary
differential equations (ODEs). Beginning at the initial time with initial
conditions, they step through the time interval, computing a solution at
each time step. If the solution for a time step satisfies the solver’s error
tolerance criteria, it is a successful step. Otherwise, it is a failed attempt;
the solver shrinks the step size and tries again. For more information, see
“ODE Solvers” in the MATLAB Mathematics documentation.

e SUNDIALS Solvers — Use with models containing events. At a
fundamental level the core algorithms for the SUNDIALS solvers are
similar to those for some of the solvers in the MATLAB ODE suite and work
as described above in ODE Solvers. For more information, see “SUNDIALS
Solvers” on page 3-6.

® Stochastic Solvers — Use with models containing a small number of
molecules. Stochastic solvers include stochastic simulation algorithm,
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explicit tau-leaping algorithm, and implicit tau-leaping algorithm. For
more information, see “Stochastic Solvers” on page 3-6.

SUNDIALS Solvers

SUNDIALS (Suite of Nonlinear and Differential/Algebraic Equation Solvers)
are part of a freely available third-party package developed at Lawrence
Livermore National Laboratory. All other ODE solvers used for simulation
of SimBiology models, such as ode45 and ode15s, are part of the MATLAB
ODE suite.

When you specify sundials for the solver, the software chooses one of two
SUNDIALS solvers, CVODE or IDA, as appropriate for your model:

® CVODKE is a solver for systems of ODEs, both nonstiff and stiff. This is
used when a model has no algebraic rules.
e IDA is a differential-algebraic equation (DAE) solver, used when one or

more algebraic rules are present.

If your model has events and you want to simulate with a deterministic solver,
you must select sundials. The other ODE solvers do not support events.

For more information on the SUNDIALS solvers, see
http://www.1llnl.gov/casc/sundials/description/description.html.

Stochastic Solvers

® “When to Use Stochastic Solvers” on page 3-7

e “Stochastic Simulation Algorithm (SSA)” on page 3-7

e “Explicit Tau-Leaping Algorithm” on page 3-8

¢ “Implicit Tau-Leaping Algorithm” on page 3-8

¢ “Ensemble Runs of Stochastic Simulations” on page 3-9

e “References” on page 3-10


http://www.llnl.gov/
http://www.llnl.gov/
http://www.llnl.gov/casc/sundials/description/description.html

Simulating Models

When to Use Stochastic Solvers

The stochastic simulation algorithms provide a practical method for
simulating reactions that are stochastic in nature. Models with a small
number of molecules can realistically be simulated stochastically, that
is, allowing the results to contain an element of probability, unlike a
deterministic solution.

To use a stochastic solver to simulate a model, ensure all reactions in the
model have their KineticLaw property set to MassAction.

Tip When simulating a model using a stochastic solver, you can increase
the LogDecimation property of the configset object to record fewer data
points and decrease run time.

During a stochastic simulation of a model, the software ignores any rate,
assignment, or algebraic rules if present in the model. Depending on
the model, stochastic simulations may take more computation time than
deterministic simulations.

Stochastic Simulation Algorithm (SSA)

The Chemical Master Equation (CME) describes the dynamics of a chemical
system in terms of the time evolution of probability distributions. Directly
solving for this distribution is impractical for most realistic problems. The
stochastic simulation algorithm (SSA) instead efficiently generates individual
simulations that are consistent with the CME, by simulating each reaction
using its propensity function. Thus, analyzing multiple stochastic simulations
to determine the probability distribution is more efficient than directly
solving the CME.

Advantage
¢ This algorithm is exact.
Disadvantages

® Because this algorithm evaluates one reaction at a time, it may be too slow
for models with a large number of reactions.

3-7
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e If the number of molecules of any reactants is huge, it may take a long time
to complete the simulation.

Explicit Tau-Leaping Algorithm

Because the stochastic simulation algorithm may be too slow for many
practical problems, this algorithm was designed to speed up the simulation
at the cost of some accuracy. The algorithm treats each reaction as being
independent of the others. It automatically chooses a time interval such
that the relative change in the propensity function for each reaction is less
than your error tolerance. After selecting the time interval, the algorithm
computes the number of times each reaction occurs during the time interval
and makes the appropriate changes to the concentration of various chemical
species involved.

Advantages

e This algorithm can be orders of magnitude faster than the SSA.

® You can use this algorithm for large problems (if the problem is not
numerically stiff).

Disadvantages

¢ This algorithm sacrifices some accuracy for speed.
¢ This algorithm is not good for stiff models.

® You need to specify the error tolerance so that the resulting time steps are
of the order of the fastest time scale.

Implicit Tau-Leaping Algorithm

Like the explicit tau-leaping algorithm, the implicit tau-leaping algorithm is
also an approximate method of simulation designed to speed up the simulation
at the cost of some accuracy. It can handle numerically stiff problems better
than the explicit tau-leaping algorithm. For deterministic systems, a problem
is said to be numerically stiff if there are “fast” and “slow” time scales present
in the system. For such problems, the explicit tau-leaping method performs
well only if it continues to take small time steps that are of the order of the
fastest time scale. The implicit tau-leaping method can potentially take much
larger steps and still be stable. The algorithm treats each reaction as being
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independent of others. It automatically selects a time interval such that the
relative change in the propensity function for each reaction is less than the

user specified error tolerance. After selecting a time interval, the algorithm
computes the number of times each reaction occurs during the time interval
and makes the appropriate changes to the concentration of various chemical
species involved.

Advantages
® This algorithm can be much faster than the SSA. It is also usually faster

than the explicit tau-leaping algorithm.

® You can use this algorithm for large problems and also for numerically
stiff problems.

® The total number of steps taken is usually less than the explicit-tau-leaping
algorithm.

Disadvantages

e This algorithm sacrifices some accuracy for speed.

® There is a higher computational burden for each step as compared to the
explicit tau-leaping algorithm. This leads to a larger CPU time per step.

¢ This method often dampens perturbations of the slow manifold leading to a
reduced state variance about the mean.

Ensemble Runs of Stochastic Simulations

Because stochastic simulations rely on an element of probability, sequential
runs produce different results. Therefore, multiple stochastic runs are needed
to determine the probability distribution of the simulation results.

Ensemble runs perform multiple simulations of a model using a stochastic
solver. They let you gather data from multiple stochastic runs of the model
so you can compare and analyze fluctuations in the behavior of a model over
repeated stochastic simulations.

Running Ensemble Simulations. The following functions let you perform
and analyze ensemble runs at the command line:

3-9
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® sbioensemblerun — Perform a stochastic ensemble run of the MATLAB
model object.

® sbioensembleplot — Show a 2-D distribution plot or a 3-D shaded plot of
the time varying distribution of one or more specified species.

® sbioensemblestats — Get mean and variance as a function of time for
all the species in the model used to generate ensemble data by running
sbioensemblerun.

References
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Chemistry, 105:1876-1899.
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[3] Gillespie D. (2000), “The Chemical Langevin Equation,” Journal of
Chemical Physics, 113(1): 297-306.

[4] Gillespie D. (2001), “Approximate Accelerated Stochastic
Simulation of Chemically Reacting Systems,” Journal of Chemical
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See Also
For examples of simulating models, see:

¢ “Example — Simulating a Model and Viewing Results” on page 3-12

® Analysis of Stochastic Ensemble Data in SimBiology demo
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Example — Simulating a Model and Viewing Results

In this section...

“Overview” on page 3-12

“Loading the Example Model” on page 3-13
“Configuring Simulation Settings” on page 3-13
“Simulating the Model” on page 3-14

“Plotting Simulation Results” on page 3-14
“Extracting Data for Analysis” on page 3-17

Overview

About the Example Model

This example uses the model described in “Model of the Yeast Heterotrimeric
G Protein Cycle” on page C-19 to illustrate model simulation.

This table shows the reactions used to model the G protein cycle and the
corresponding rate parameters (rate constants) for each mass action reaction.
For reversible reactions, the forward rate parameter is listed first.

No., Name Reaction’ Rate
Parameters

1 | Receptor-ligand L +R <->RL kRL, kRLm
Interaction

2 Heterotrimeric G protein | Gd + Gbg -> G kG1
formation

3 G protein activation RL + G -> Ga + Gbg + RL kGa
Receptor synthesis and R <-> null kRdo, kRs
degradation

5 | Receptor-ligand RL -> null kRD1
degradation




Example — Simulating a Model and Viewing Results

No. Name Reaction! Rate
Parameters
6 G protein inactivation Ga -> Gd kGd

I Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd
= inactive G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G =
inactive Gbg:Gd complex, Ga = active G-alpha-GTP

About the Example

This example shows how to configure simulation settings and simulate a
model, saving the results in a SimData object. It then illustrates how to
plot all species in the SimData object, as well as plot only the species or
parameter of interest, such as:

® GaFrac — The fraction of total Ga that is active

® Ga, G, and Gd — The species that contain G-alpha units

The example also illustrates how to extract data from the SimData object
for analysis.

Loading the Example Model

Load the gprotein.sbproj project, which includes the variable m1, a model
object:

sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

Configuring Simulation Settings

Set the simulation solver to ode15s and set a stop time of 500 by editing the
SolverType and StopTime properties of the configset object associated
with the m1 model:

csObj = getconfigset(mil);
set(csObj, 'SolverType', 'odelb5s', 'StopTime', 500)
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Simulating the Model

Simulate the model, saving the results in a SimData object:
simDataObj = sbiosimulate(m1);
Plotting Simulation Results

1 Plot all the species in the model:

sbioplot(simDataObj)

Figure 1 =8 (E=H =5
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2 Show only the plot of the GaFrac parameters by expanding Run 1, and
then clearing all check boxes other than GaFrac:
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Notice the scale of the y-axis changes as you remove species from the plot.

3 Show only the plots of the species containing G-alpha units by selecting the
G, Gd, and Ga check boxes, and clearing the GaFrac check box:
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4 Alternately, create the previous plots by using the selectbyname method
to create SimData objects containing data for only the species of interest,
and then plotting these smaller objects:

GafracObj = selectbyname(simDataObj, 'GaFrac');
GaAllObj = selectbyname(simDataObj, {'Ga', 'G', 'Gd'});
sbioplot(GafracObj)

sbioplot(GaAllObj)
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Extracting Data for Analysis

1 Use the selectbyname method to extract arrays containing the time points,
state data, and state names for a subset of the data, namely the Ga, G, and
Gd species that contain G-alpha units:

[times, data, names] = selectbyname(simDataObj, {'Ga', 'G', 'Gd'});

2 The previous plot shows that at the start of the simulation, the total
G-alpha units (G + Gd + Ga) = 10000. Check the conservation of mass of the
G-alpha units by summing their values to see if they equal 10000:

GaTotal = sum(data, 2);

3 View the sum of the values for the G-alpha units for the last 10 time points
in the simulation:

GaTotal(end-9:end)
ans =
1.0e+004 *

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

—_ a4 a4 a4 A g A g A
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Calculating Sensitivities
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In this section...

“About Calculating Sensitivities” on page 3-18

“Model Requirements for Calculating Sensitivities” on page 3-18
“Setting SolverOptions Properties” on page 3-19

“Calculating Sensitivities of a Model and Viewing Results” on page 3-20
“See Also” on page 3-21

“References” on page 3-21

About Calculating Sensitivities

Calculating sensitivities lets you determine which species in a model is most
sensitive to a specific condition (for example, a drug). Calculating sensitivities
calculates the time-dependent sensitivities of all the species states with
respect to species initial conditions and parameter values in the model.

Thus, if a model has a species x, and two parameters y and z, the
time-dependent sensitivities of x with respect to each parameter value are the
time-dependent derivatives

ox dx

dy’ oz
where, the numerator is the sensitivity output and the denominators are the
sensitivity inputs to sensitivity analysis.

For more information on the calculations performed, see “References” on
page 3-21.

Model Requirements for Calculating Sensitivities

Sensitivity analysis is supported only by the ordinary differential equation
(ODE) solvers. The software calculates local sensitivities by combining the
original ODE system for a model with the auxiliary differential equations for
the sensitivities. The additional equations are derivatives of the original
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equations with respect to parameters. This method is sometimes called
“forward sensitivity analysis” or “direct sensitivity analysis”. This larger
system of ODEs is solved simultaneously by the solver.

SimBiology sensitivity analysis uses “complex-step approximation” to
calculate derivatives of reaction rates. This technique yields accurate results
for the vast majority of typical reaction kinetics, which involve only simple
mathematical operations and functions. When a reaction rate involves a
nonanalytic function, this technique can lead to inaccurate results. In this
case, either sensitivity analysis is disabled, or sensitivity analysis warns
you that the computed sensitivities may be inaccurate. An example of such
a nonanalytic function is the MATLAB function abs. If sensitivity analysis
gives questionable results on a model whose reaction rates contain unusual
functions, you may be running into limitations of the complex-step method.
Contact MathWorks Technical Support for additional information.

Note Models containing the following active components do not support
sensitivity analysis:

e Algebraic rules

Repeated assignment rules

Rate rules

Events

® Doses

Setting SolverOptions Properties

Perform sensitivity analysis at the command line by setting the following
properties of the SolverOptions property of your configset object, before
using the sbiosimulate function:

® SensitivityAnalysis — Set to true to calculate the time-dependent

sensitivities of all the species states defined by the SpeciesOutputs
property with respect to the initial conditions of the species specified
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in SpeciesInputFactors and the values of the parameters specified in
ParameterInputFactors.

® SensitivityAnalysisOptions — An object that holds the sensitivity
analysis options in the configuration set object. Properties of
SensitivityAnalysisOptions are:

= SpeciesOutputs — Specify the species for which you want to compute
the sensitivities. This is the numerator as described in “About
Calculating Sensitivities” on page 3-18.

= SpeciesInputFactors — Specify the species with respect to which you
want to compute the sensitivities. Sensitivities are calculated with
respect to the InitialAmount property of the specified species. This is
the denominator, described in “About Calculating Sensitivities” on page
3-18.

= ParameterInputFactors — Specify the parameters with respect to
which you want to compute the sensitivities of the species outputs in
your model. Sensitivities are calculated with respect to the values of
the specified parameters. This is the denominator, described in “About
Calculating Sensitivities” on page 3-18.

= Normalization — Specify the normalization for the calculated

sensitivities:
'"None' — No normalization
'Half' — Normalization relative to the numerator (species output)
only
'"Full' — Full dedimensionalization

For more information about normalization, see Normalization in the
SimBiology Reference.

Calculating Sensitivities of a Model and Viewing
Results

After setting SolverOptions properties, calculate the sensitivities of a model
by providing the model object as an input argument to the sbiosimulate
function.

The sbiosimulate function returns a SimData object containing the
following simulation data:
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* Time points, state data, state names, and sensitivity data

e Metadata such as the types and names for the logged states, the
configuration set used during simulation, and the date of the simulation

A SimData object is a convenient way of keeping time data, state data,
sensitivity data, and associated metadata together. A SimData object has
properties and methods associated with it, which you can use to access and
manipulate the data.

See Also
For examples of calculating sensitivities, see:

e “Example — Calculating Sensitivities” on page 3-22

® Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in
the Yeast Heterotrimeric G Protein Cycle demo

References
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Example — Calculating Sensitivities

In this section...

“Overview” on page 3-22
“Loading and Configuring the Model for Sensitivity Analysis” on page 3-23

“Performing Sensitivity Analysis” on page 3-24

“Extracting and Plotting Sensitivity Data” on page 3-24

Overview

About the Example Model

This example uses the model described in “Model of the Yeast Heterotrimeric
G Protein Cycle” on page C-19 to illustrate SimBiology sensitivity analysis
options.

This table lists the reactions used to model the G protein cycle and the
corresponding rate parameters (rate constants) for each mass action reaction.
For reversible reactions, the forward rate parameter is listed first.

No. Name Reaction’ Rate
Parameters

1 | Receptor-ligand L +R <->RL kRL, KRLm
Interaction

2 Heterotrimeric G protein | Gd + Gbg -> G kG1
formation

3 G protein activation RL + G -> Ga + Gbg + RL kGa

4 Receptor synthesis and R <-> null kRdo, kRs
degradation

5 | Receptor-ligand RL -> null kRD1
degradation
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No. Name Reaction! Rate
Parameters
6 G protein inactivation Ga -> Gd kGd

I Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd
= inactive G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G =
inactive Gbg:Gd complex, Ga = active G-alpha-GTP

About the Example

Assume that you are calculating the sensitivity of species Ga with respect to
every parameter in the model. Thus, you want to calculate the time-dependent
derivatives

dGa) 0(Ga) 0(Ga) 0(Ga)
d(kRLm)’ 8(kRL) 8(kG1)’ 0(kGa)

Loading and Configuring the Model for Sensitivity
Analysis

1 The gprotein_norules.sbproj project contains two models: one for the
wild-type strain (stored in variable m1), and one for the mutant strain
(stored in variable m2). Load the G protein model for the wild-type strain:

sbioloadproject gprotein_norules m1

The m1 model object appears in the MATLAB Workspace.

2 The options for sensitivity analysis are in the configuration set object. Get
the configuration set object from the model:

csObj = getconfigset(m1);

3 Use the sbioselect function, which lets you query by type, to retrieve the
Ga species from the model:

Ga = sbioselect(mi1, 'Type', 'species', 'Where', 'Name','=="','Ga');
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4 Set the SpeciesOutputs property of the SensitivityAnalysisOptions
object to the Ga species:

set(csObj.SensitivityAnalysisOptions, 'SpeciesOutputs', Ga);

5 Use the shioselect function, which lets you query by type, to retrieve all
the parameters from the model and store the vector in a variable, pif:

pif = sbioselect(mi,'Type', 'parameter');

6 Set the ParameterInputFactors property of the
SensitivityAnalysisOptions object to the pif variable containing the
parameters:

set(csObj.SensitivityAnalysisOptions, 'ParameterInputFactors', pif);

7 Enable sensitivity analysis in the configuration set object (csObj) by setting
the SensitivityAnalysis option to true:

set(csObj.SolverOptions, 'SensitivityAnalysis', true);

8 Set the Normalization property of the SensitivityAnalysisOptions
object to perform 'Full' normalization:

set(csObj.SensitivityAnalysisOptions, 'Normalization', 'Full');

Performing Sensitivity Analysis
Simulate the model and return the data to a SimData object:

simDataObj = sbiosimulate(m1);

Extracting and Plotting Sensitivity Data

You can extract sensitivity results using the getsensmatrix method of a
SimData object. In this example, R is the sensitivity of the species Ga

with respect to eight parameters. This example shows how to compare the
variation of sensitivity of Ga with respect to various parameters, and find the
parameters that affect Ga the most.

1 Extract sensitivity data in output variables T (time), R (sensitivity data for

species Ga), snames (names of the states specified for sensitivity analysis),
and ifacs (names of the input factors used for sensitivity analysis):
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[T, R, snames, ifacs] = getsensmatrix(simDataObj);

2 Because R is a 3-D array with dimensions corresponding to times, output
factors, and input factors, reshape R into columns of input factors to
facilitate visualization and plotting:

R2 = squeeze(R);

3 After extracting the data and reshaping the matrix, plot the data:

% Open a new figure
figure;

% Plot time (T) against the reshaped data R2

plot(T,R2);

title('Normalized Sensitivity of Ga With Respect To Various Parameters');
xlabel('Time (seconds)');

ylabel('Normalized Sensitivity of Ga');

% Use the ifacs variable containing the

% names of the input factors for the legend

% Specify legend location and appearance

leg = legend(ifacs, 'Location', 'NorthEastOutside');

set(leg, 'Interpreter', 'none');
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From the previous plot you can see that Ga is most sensitive to parameters
kGd, kRs, kRD1, and kGa. This suggests that the amounts of active G protein in
the cell depends on the rate of:

® Receptor synthesis

® Degradation of the receptor-ligand complex

® G protein activation

* G protein inactivation
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Estimating Parameters

In this section...

“About Parameter Estimation” on page 3-27
“Estimating Parameters of a Model” on page 3-27
“See Also” on page 3-27

“About Population Fitting” on page 3-28

About Parameter Estimation

Parameter estimation lets you estimate the values of unknown parameters
in a model by fitting the model simulation results to experimental data.
This technique is especially useful for parameters that you do not measure
directly. This technique is appropriate when you have a fairly complete data
set for one individual.

Estimating Parameters of a Model

You estimate one or more parameters in your model using the sbioparamestim
function.

If you do not have Optimization Toolbox™ installed, then sbioparamestim
uses the MATLAB function fminsearch as the default method for the
parameter estimation.

If you have Optimization Toolbox and, optionally, Global Optimization
Toolbox installed, then sbioparamestim uses the 1sgnonlin function as the
default method for the parameter estimation. However, you can specify other
optimization functions from these toolboxes as the parameter estimation
method.

See Also

For more information on parameter estimation, see the sbioparamestim
reference page.

For examples of estimating parameters, see:
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e “Example — Estimating Parameters Using sbioparamestim” on page 3-29

® Parameter Scanning, Parameter Estimation, and Sensitivity Analysis in
the Yeast Heterotrimeric G Protein Cycle demo

About Population Fitting

SimBiology lets you perform individual and population fitting, which

1s parameter estimation for grouped sets of experimental data. This
functionality requires Statistics Toolbox™ Version 7.3 or later. This type

of parameter estimation is useful for pharmacokinetic/pharmacodynamic
(PKPD) models, in which you typically want to fit your model to a population
of data. This technique 1s appropriate when you have an incomplete data set
for many individuals.

You perform individual fitting using the sbionlinfit function.

You perform population fitting using the sbionlmefit or sbionlmefitsa
function.

For more information, see the following:

e “Creating Pharmacokinetic Models” on page 4-17
* “Parameter Fitting in Pharmacokinetic Models” on page 4-32
e “Fitting Pharmacokinetic Model Parameters” on page 4-34

¢ The demo Modeling the Population Pharmacokinetics of Phenobarbital
in Neonates
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Example — Estimating Parameters Using sbioparamestim

In this section...

“Overview” on page 3-29

“Loading the Example Model” on page 3-30

“Defining Experimental Data” on page 3-30

“Simulating the G Protein Model” on page 3-31

“Estimating the kGd Parameter in the G Protein Model” on page 3-33

“Simulating and Plotting Results Using the Estimated Parameter” on page
3-35

“Estimating Other Parameters in the G Protein Model” on page 3-36

Overview

About the Example Model

This example illustrates parameter estimation using time-course data from
one experiment, using the sbioparamestim function. For information on
all available parameter estimation and population fitting techniques, see
“Estimating Parameters” on page 3-27.

This example uses the model described in “Model of the Yeast Heterotrimeric
G Protein Cycle” on page C-19 to illustrate parameter estimation.

This table lists the reactions used to model the G protein cycle and the
corresponding rate parameters (rate constants) for each mass action reaction.
For reversible reactions, the forward rate parameter is listed first.

No. Name Reaction! Rate
Parameters
1 Receptor-ligand L + R <->RL kRL, kRLm
interaction
2 Heterotrimeric G protein | Gd + Gbg -> G kG1
formation
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No., Name Reaction' Rate
Parameters

G protein activation RL + G -> Ga + Gbg + RL kGa

4 Receptor synthesis and R <-> null kRdo, kRs
degradation

5 | Receptor-ligand RL -> null kRD1
degradation

6 G protein inactivation Ga -> Gd kGd

I Legend of species: L = ligand (alpha factor), R = alpha-factor receptor, Gd
= inactive G-alpha-GDP, Gbg = free levels of G-beta:G-gamma complex, G =
inactive Gbg:Gd complex, Ga = active G-alpha-GTP

About the Example

The study used to build the example model (Yi et al., 2003) reported the
estimated value of parameter kGd as 0.11 for the wild-type strain. In
“Example — Calculating Sensitivities” on page 3-22, the analysis showed that
Ga is sensitive to parameters kGd, kRs, kRD1, and kGa.

This example shows:

e How to estimate the parameter kGd and determine its effect on the model

* How to estimate parameters kGd, kRs, kRD1, and kGa to obtain a better
fit to the experimental data

Loading the Example Model

The gprotein.sbproj project contains a model for the wild-type strain
(stored in variable m1). Load the G protein model for the wild-type strain:

sbioloadproject gprotein

The m1 model object appears in the MATLAB Workspace.

Defining Experimental Data

The study used for this example (Yi et al., 2003) reports, in a plot, the
experimental data as the fraction of active G protein. Store the time data for
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the experimental results in a variable, tExpt, and store the values for the
fraction of active G protein in a variable, GaFracExpt:

tExpt = [0 10 30 60 110 210 300 450 600]";
GaFracExpt = [0 0.35 0.4 0.36 0.39 0.33 0.24 0.17 0.2]"';

Note For this simple example, you stored the experimental data in a variable
in the MATLAB Workspace by typing the data values. However, typically,
you import larger data sets into a MATLAB variable. For more information
about importing data into variables, see “Importing Data” in the MATLAB
documentation.

Simulating the G Protein Model

1 Simulate the model and return the results to a SimData object:
simDataObj = sbiosimulate(m1);

2 Retrieve the time and state data for the GaFrac parameter:
[tOrig, GaFracOrig] = selectbyname(simDataObj, 'GaFrac');

Calculating R? for the G Protein Model
R? is the square of the correlation between the response values and the

predicted response values. Therefore, R? measures how successful the fit is in
explaining the variation of the data.
1 Calculate the sum of squares about the mean (SST):

sst = norm(GaFracExpt - mean(GaFracExpt))"2;

2 Interpolate the data to get time points that match the time points in the
experimental data using the cubic interpolation method:

GaFracResampled = interpi1(tOrig, GaFracOrig, tExpt, ‘'cubic');

3 Calculate the sum of squares due to error (SSE):
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sse = norm(GaFracExpt - GaFracResampled)"2;

4 Calculate the R? value for the simulation data before parameter estimation:

rSquareOrig 1-sse/sst

rSquareOrig
0.8967

For more information about the functions used here, see the norm and
interp1 reference pages.

Plotting the Experimental Results and Simulation Data

1 Plot the experimental data for active G protein:

plot (tExpt, GaFracExpt, 'ro');
title('Variation of G Protein');
xlabel('Time (sec)');

ylabel('Active Fraction of G Protein');
legend('Experiment');

2 Plot the simulation data in the same plot:

hold on;

plot(tOrig, GaFracOrig);

legendText = {'Experiment', sprintf('Original R"2=%4.2f',...
rSquareOrig)};

legend(legendText{:});
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Leave this figure window open so you can use it to plot and compare results of
using the estimated parameters later in this example.

Estimating the kGd Parameter in the G Protein Model

The study used to build the G protein model reported an estimated value of
0.11 for the parameter kGd in the wild-type strain (Y1 et al., 2003). This
example estimates the value of kGd.

1 Create a variable for the parameter to estimate. Also create a variable for

the parameter corresponding to the experimental data to which you are
fitting:

3-33



3 Simulation and Analysis

paramToEst = sbioselect(m1, 'Name', 'kGd');
GaFrac = sbioselect(m1, 'Name', 'GaFrac');

2 Specify plotting of each iteration of the parameter estimation to see how
optimization is progressing:

opt = optimset('PlotFcns',@optimplotfval, ‘MaxIter',15);

3 Use the current value of the kGd parameter in the model as the starting
value for optimization:

[estValues1, resultil] = sbioparamestim(mi, tExpt, GaFracExpt,

GaFrac, paramToEst, {}, {'fminsearch',o

Optimization PlotFcns EI@
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Simulating and Plotting Results Using the Estimated
Parameter

Use the estimated value of the kGd parameter to see how it affects simulation
results.

1 Use a variant to store the estimated value of kGd:

estvarObj = addvariant (m1, 'Optimized kGd');
addcontent(estvarObj, {'parameter', 'kGd', 'Value', estValuesi});

2 Apply the value stored in the variant, simulate the model, and return the
results:

simDataObj1 = sbiosimulate(mi, estvarObj );
[t1, GaFrac1] = selectbyname(simDataObj1, 'GaFrac');

3 Calculate the R? value with the new estimate obtained using ' fminsearch':

GaFraciResampled = interpi1(t1, GaFrac1, tExpt, 'cubic');
ssel = norm(GaFracExpt - GaFraciResampled)"2;
rSquarel = 1 - ssel/sst

rSquarei

0.9199

4 Plot the data and compare. If you left the previous figure open, because
hold is on, the new plot appears in the existing figure to facilitate the
comparison:

plot(t1, GaFractl, 'm-');

legendText{end + 1} = sprintf('kGd Changed R"2=%4.2f', rSquarei);
legend(legendText{:});
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The figure shows the best fit achieved by changing the parameter kGd.

Estimating Other Parameters in the G Protein Model

The example illustrating sensitivity analysis (“Example — Calculating
Sensitivities” on page 3-22) showed that Ga is sensitive to parameters kRs,
kRD1, kGa, and kGd. Based on the results from the sensitivity analysis, this
tutorial shows you how to estimate these parameters. The sensitivity data is
presented in “Extracting and Plotting Sensitivity Data” on page 3-24.
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Note Although this example estimates four parameters to fit the data, there
is no published experimental data that verifies these values, and this example
is only for illustration.

1 Create a variable containing the parameters to estimate:

paramsToEst = [sbioselect(m1, 'Name', 'kRs');...
sbioselect(m1, 'Name', 'kRD1');...
sbioselect(mi, 'Name', 'kGa');
sbioselect(mi1, 'Name', 'kGd')];
2 Estimate the parameters. Use the current values of parameters in the
model as the starting values for optimization. Use the opt variable you

created previously to specify plotting of each iteration of the parameter
estimation to see how optimization is progressing:

[estValues2, result2] = sbioparamestim(mi, tExpt, GaFracExpt,...
GaFrac, paramsToEst, {}, {'fminsearch',opt});
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3 Compare original parameter values and the estimated parameter values
obtained with 'fminsearch':

% Original parameter values
paramsToEst

SimBiology Parameter Array

Index: Name: Value: ValueUnits:
1 kRs 4

2 kRD1 0.004

3 kGa 1e-005

4 kGd 0.11

% Estimated parameter values
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num2str(estValues?2)
ans =

4.549
0.0031018
9.0068e-006
0.12381

4 Calculate the R? value using the new estimates obtained with
‘fminsearch':

estvarObj2 = addvariant(mi, 'Optimized kRs, kRD1, kGa, and kGd');
addcontent(estvaroObj2,
{{'parameter', 'kRs', 'Value', estValues2(1)},
{'parameter', 'kRD1', 'Value', estValues2(2)},
{'parameter', 'kGa', 'Value', estValues2(3)},
{'parameter', 'kGd', 'Value', estValues2(4)}});
simDataObj2 = sbiosimulate(mi, estvarObj2);
[t2, GaFrac2] = selectbyname(simDataObj2, 'GaFrac');
GaFrac2Resampled = interpi1(t2, GaFrac2, tExpt, 'cubic');
sse2 = norm(GaFracExpt - GaFrac2Resampled)"2;
rSquare2 = 1 - sse2/sst

rSquare2 =

0.9603

5 Plot the data and compare. If you left the previous figure open, because
hold is on, the new plot appears in the existing figure to facilitate the
comparison:

plot(t2, GaFrac2, 'g-');

legendText{end + 1} = sprintf('4 Constants Changed R"2=%4.2f"',...
rSquare2) ;

legend(legendText{:});
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Accelerating Model Simulations and Analyses

In this section...

“What Is Acceleration?” on page 3-41

“What Simulations and Analyses Can Be Accelerated?” on page 3-41
“When to Accelerate Simulations and Analyses” on page 3-42
“Prerequisites for Accelerating Simulations and Analyses” on page 3-42
“Accelerating a Simulation” on page 3-42

“Troubleshooting Accelerated Simulations” on page 3-43

What Is Acceleration?

Normally, when simulating or analyzing a model in SimBiology, you express
the model in MATLAB code. You can accelerate the simulation or analysis by
converting the model to compiled C code, which executes faster. Because this
compilation step has a small time overhead, acceleration is not recommended
for individual simulations of small models. However, for large models, or for
repeated simulations during analysis, acceleration can provide a significant
speed increase that outweighs the small time overhead.

What Simulations and Analyses Can Be Accelerated?
You can accelerate the following:

® Simulating models

¢ (Calculating sensitivities

Note For parameter estimations (using sbioparamestim) and population
fittings (using sbionlinfit, sbionlmefit, or shionlmefitsa), acceleration
is automatically enabled, if the prerequisites for accelerating simulations
and analyses are met.
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When to Accelerate Simulations and Analyses

The functionality to accelerate simulations performs optimally under the
following conditions:

¢ Running many simulations with different initial conditions

¢ Running very long simulations (for example, simulations that take longer
than a minute to run)

Prerequisites for Accelerating Simulations and
Analyses

To prepare your models for accelerated simulations:

1 Install a C compiler (if one is not already installed on your system). For
a current list of supported compilers, see Supported and Compatible
Compilers at www.mathworks.com.

Tip On 32-bit Windows® platforms, the lec compiler is automatically
installed. However, for better performance of the acceleration functionality,
you may want to install a supported compiler other than lcc. You can

also use mex -setup to choose and configure a different C compiler, as
described in “Building MEX-Files” in the MATLAB External Interfaces
documentation.

2 Run mex -setup once after compiler installation, as described in the mex
reference page.

3 Ensure that any user-defined functions in your model can be used for code
generation from MATLAB, so they can convert to compiled C. For more
information, see the Code Generation from MATLAB documentation.

Accelerating a Simulation

Accelerating simulations is a two step process:
1 Use the sbioaccelerate function to prepare your model for accelerated

simulations. Use the same input arguments that you plan to use with
sbiosimulate. For example:
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sbioaccelerate(modelObj, configsetObj, doseObj);

This step prepares your model for acceleration and may take a minute or
longer to complete for very large models.

Note You need to run sbioaccelerate again, before running simulations,
if you make any modifications to this model, other than:

¢ Changes to any variants
¢ Changes to values for the InitialAmount property of species
¢ Changes to the Capacity property of compartments

¢ Changes to the Value property of parameters

2 Use the sbiosimulate function with the same input arguments that you
used with sbioaccelerate. For example:

simdataObj = sbiosimulate(modelObj, configsetObj, doseObj);

Troubleshooting Accelerated Simulations

If you have user-defined functions, do not use persistent variables in these
functions. Persistent variables are not compatible with the functionality used
for accelerating simulations.

If you specify user-defined functions in SimBiology expressions, you might

see the following warning if your code is not compatible with code generation
from MATLAB:

The SimBiology Expression and any user-defined functions
could not be accelerated. Please check that these expressions

and any user-defined functions are supported for code generation
as described in the Code Generation from MATLAB documentation.

where Expression is any of the following:

® Reaction rate/rule expression

® Repeated assignment rule expression
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* Event trigger expression

¢ Event function expression

For more information, see the Code Generation from MATLAB documentation.
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¢ “Pharmacokinetic Modeling Functionality” on page 4-2

¢ “‘Importing Data — Supported Files and Data Types” on page 4-8
¢ “Importing Data” on page 4-13

¢ “Creating Pharmacokinetic Models” on page 4-17

e “Parameter Fitting in Pharmacokinetic Models” on page 4-32

¢ “Fitting Pharmacokinetic Model Parameters” on page 4-34
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Pharmacokinetic Modeling Functionality

In this section...

“Overview” on page 4-2

“Required and Recommended Software for Pharmacokinetic Modeling”
on page 4-3

“How This Product Supports Pharmacokinetic Modeling” on page 4-4
“Using the Command Line Versus the SimBiology Desktop” on page 4-6

“Accessing a Pharmacokinetic Modeling Demo” on page 4-6

“Acknowledgements: Tobramycin Data Set” on page 4-6

Overview

SimBiology software extends the MATLAB computing environment for
analyzing pharmacokinetic (PK) data using models. The software lets you
do the following:

¢ (Create models — Use a model construction wizard. Alternatively, extend
any model with pharmacodynamic (PD) model components, or build higher
fidelity models. See “Model” on page 4-4 for more information.

e Fit data — Fit nonlinear, mixed-effects models to data, and estimate the
fixed and random effects, or fit the data using nonlinear least squares. For
more information, see “Analyze Data Using Models” on page 4-4.

® Generate diagnostic plots — For more information, see “Analyze Data

Using Models” on page 4-4.

The software lets you work with different model structures, thus letting you
try multiple models to see which one produces the best results.
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Required and Recommended Software for
Pharmacokinetic Modeling

Required Software

MATLAB

Statistics Toolbox (Version 7.3
(R2010a) or greater)

Recommended Software

C Compiler

Optimization Toolbox

Provides a command-line interface and
an integrated software environment.
For instructions, see the MATLAB
installation documentation for your
platform.

If you have installed MATLAB and
want to check which other MathWorks®
products are installed, enter ver in the
MATLAB Command Window.

Provides fitting tools including functions
used to analyze nonlinear mixed effects.

Required to prepare the model for
accelerating simulations. For list of
supported compilers, see Supported and
Compatible Compilers.

Optimization Toolbox extends the
MATLAB technical computing
environment with tools and widely used
algorithms for standard and large-scale
optimization. These algorithms

solve constrained and unconstrained,
continuous and discrete problems. If
the Optimization Toolbox product is
installed, you can specify additional
methods for likelihood maximization. If
you do not have this product, SimBiology
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uses fminsearch provided by MATLAB
for likelihood maximization.

How This Product Supports Pharmacokinetic
Modeling

Import and Work with Data

You can import tabular data into the SimBiology desktop or the MATLAB
Workspace. The supported file types are .x1s, .csv, and .txt. You can
specify that the data is in a NONMEM?® formatted file. The import process
interprets the columns according to the NONMEM definitions.

From the SimBiology desktop, you can filter the raw data to suppress outliers,
visualize data using common plots (such as plot, semilog, scatter, or
stairs), and perform basic statistical analysis. You also can use functions to
process and visualize the data at the command line.

Model

SimBiology provides an extensible modeling environment. You can do any
of the following:

¢ Create a PK model using a model construction wizard to specify the number
of compartments, the route of administration, and the type of elimination.

¢ Extend any model with pharmacodynamic (PD) model components, or build
higher fidelity models.

¢ Build or load your own SimBiology, or SBML model.

For more information on building SimBiology models, see Chapter 1,
“Modeling”.

Analyze Data Using Models

Perform both individual and population fits to grouped longitudinal data:
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¢ Individual fit — Fit data using nonlinear least-squares method, specify
parameter transformations, estimate parameters, and calculate residuals
and the estimated coefficient covariance matrix.

e Population fit — Fit data, specify parameter transformations, and estimate
the fixed effects and the random sources of variation on parameters using
nonlinear mixed-effects models.

You can use the following methods to estimate the fixed effects:
= LME — Linear mixed-effects approximation

= RELME — Restricted LME approximation

= FO — First-order estimate

= FOCE — First-order conditional estimate

For more information about each of these methods, see nlmefit in the
Statistics Toolbox documentation.

e Population fit using a stochastic algorithm — Fit data, specify parameter
transformations, and estimate the fixed effects and the random sources
of variation on parameters, using the Stochastic Approximation
Expectation-Maximization (SAEM) algorithm. SAEM is more robust
with respect to starting values. This functionality relaxes assumption of
constant error variance.

For more information, see nlmefitsa in the Statistics Toolbox
documentation.

In addition, you can generate diagnostic plots that show:

® The predicted time courses and observations for an individual or the
population

® Observed versus predicted values

® Residuals versus time, group, or predictions

® Distribution of the residuals

® A box-plot for random effects or parameter estimates from individual fitting
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Using the Command Line Versus the SimBiology
Desktop

SimBiology extends MATLAB and lets you access pharmacokinetic modeling
functionality at the command line and in the graphical SimBiology desktop.

Use the command line to write and save scripts for batch processing and
to automate your workflow.

Use the SimBiology desktop to interactively change and iterate through the
model workflow. The SimBiology desktop lets you encapsulate models, data,
tasks, task settings, and diagnostic plots into one convenient package, namely
a SimBiology project.

Furthermore, if you are using the SimBiology desktop and want to learn
about using the command line, the MATLAB code capture feature in the
desktop lets you see the commands and export files for further scripting in
the MATLAB editor.

Accessing a Pharmacokinetic Modeling Demo

For a demo showing pharmacokinetic modeling functionality at the command
line, click the following link to open the demo in MATLAB: Modeling the
Population Pharmacokinetics of Phenobarbital in Neonates.

Acknowledgements: Tobramycin Data Set

Acknowledgements for data in the tobramycin.txt file in the
/matlab/toolbox/simbio/simbiodemos folder:

[1] Original Publication: Aarons L, Vozeh S, Wenk M, Weiss P, and Follath
F. “Population pharmacokinetics of tobramycin.” Br J Clin Pharmacol. 1989
Sep;28(3):305—14.

Data set provided by Dr. Leon Aarons, (laarons@fsi.pa.man.ac.uk)
The data in the tobramycin.txt file were downloaded from the Web site of the

Resource Facility for Population Kinetics http://www.rfpk.washington.edu.
Funding source: NIH/NIBIB grant P41-EB01975.


http://www.rfpk.washington.edu

Pharmacokinetic Modeling Functionality

The original data set was modified as follows:

® Header comments were removed.
® The file was converted to a tab-delimited format.

® Missing values in the HT column were denoted with "." instead of
100000000.000.
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Importing Data — Supported Files and Data Types

In this section...

“Supported Files and Data Types” on page 4-8
“Support for Importing NONMEM Formatted Files” on page 4-8

“Creating a Data File with SimBiology Definitions” on page 4-12

Supported Files and Data Types

You can import tabular data to the SimBiology desktop or to the MATLAB
Workspace. The supported file types are .x1s, .csv, and . txt. You can specify
that the data i1s in a NONMEM formatted file. The import process interprets
the columns according to the NONMEM definitions. For more information see
“Support for Importing NONMEM Formatted Files” on page 4-8.

From the SimBiology desktop, you can filter the raw data to suppress outliers,
visualize data using common plots (such as plot, semilog, scatter, or
stairs), and perform basic statistical analysis. You also can use functions to
process and visualize the data at the command line.

Note If your data set contains dosing information that is infusion data, the
data set must contain the rate and not an infusion duration.

Unit Conversion

Regardless of whether unit conversion functionality is on or off, dosing in the
data file must be expressed in amounts (or as amount/time for infusion rate).
By default Unit Conversion is off, so you must ensure that units for the data
are consistent with each other. If you want to turn on unit conversion, see
“Unit Conversion for Imported Data and the Model” on page 4-27 .

Support for Importing NONMEM Formatted Files

You can specify that the data is in a NONMEM formatted file. The following
table highlights the interpretation of this data in SimBiology software.



Importing Data — Supported Files and Data Types

Column Header

Interpretation

ID

Text or numeric values that identify the record.
The import process assumes that contiguous
data with the same value contains data from one
individual. If the data contains non-contiguous
references to the same value, the import process
assigns the second ID encountered an indexed
valued derived from the group first encountered.
For example, if the ID columns contains [1 1 1 2
2 211 1], the IDs assigned are 1, 2, 1_1.

TIME

Monotonically increasing positive values within
each group, indicating time of observation or dose.
The data file can specify clock (2:30) or decimal
values (6.25). The import process assigns a value
of 0 to the first TIME value in the data file. The
import process assigns subsequent values relative
to the first value. For example the import process
interprets [10:05 10:30 11 12:30 21.3] as: [0 0.25
0.95 2.25 14.2].

If the data file also contains a DATE column, the
import process uses it with the TIME column in
calculating the relative TIME values. The column
cannot contain Inf.

DATE, DAT1, DAT2, or
DAT3

Defines the day of the observation or the dose.
The column can contain the month as a number
(9) or a string (Sep). Specify date in the following
formats:

® DATE — The column can specify
month/day/year or month-day-year. If
you specify two numbers, the import process
assumes they are month and day.

® DAT1 — The column can specify
day/month/year or day-month-year. If
you specify two numbers, the import process
assumes they are day and month.
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Column Header

Interpretation

® DAT2 — The column can specify
year/month/day or year-month-day. If
you specify two numbers, the import process
assumes they are month and day.

® DAT3 — The column can specify
year/day/month or year-day-month. If
you specify two numbers, the import process
assumes they are day and month.

Note the following additional assumptions:
¢ [f you specify only one number, the import

process assumes it is the day

® You can omit the year or specify 1, 2, 3, or
4 digits. If you specify two-digit years, it is
assumed to be in the 1900s.

DV

Numeric value of an observation. Column cannot
contain Inf or Inf.

MDV

Defines whether a row describes an observation:
* Row contains 0 — Observation event

e Row contains 1 — Not an observation event

EVID

4-10

Defines the type of event described for the row

in the record:

¢ 0 — Observation event; row contains an
observed value.

® 1 — Dose event; row describes a dose.
e 2 — Other event; row describes some other

event such as measurement of a covariate.

If a column contains values for dose, but EVID is
not 1, the import process ignores the value. You
see a warning and the value is ignored.
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Column Header

Interpretation

The import process does not support values 3 and
4. You see a warning and the value is ignored.

CMT

Indicates which compartment is used for
observation value or for dose received. The
interpretation also depends on EVID:

® Observation event (EVID = 0) — CMT column
indicates which compartment was used for
observation value.

® Dose Event (EVID = 1) — CMT column indicates
which compartment received the dose.

AMT

Positive number indicating dose. 0 or NaN specifies
no dose administered. The column cannot contain
Inf.

RATE

Positive number indicating rate of infusion. 0
specifies an infinite rate (equivalent to a bolus
dose), and NaN specifies no rate. The column
cannot contain Inf.

II

Positive number defining the time between doses.

ADDL

When the data specifies a number of identical
serial doses at specific intervals (defined by II),
ADDL specifies the number of doses in the series
excluding the initial dose. If the data specifies IT
but not ADDL, then SimBiology assumes that the
dosing occurs for the duration of that data record.

Unsupported NONMEM Definitions

The import process does not support (and therefore ignores) the rows
containing the following values or definitions:

® EVID values 3 and 4

® SS column for specifying steady state doses

4-11



4 pharmacokinetic Modeling

4-12

PCMT column to define whether to compute a prediction for the row

CALL column for calling the ERROR or the PK subroutine

If rate is specified as being less than zero, it is assumed to be zero

Creating a Data File with SimBiology Definitions

If you are creating a file containing population data that you want to later
import into SimBiology, create the data file with the following columns:

® Group column — Specify text or numeric values. The rows in the file that
have the same Group column value are for the same individual.

® Time column — Specify monotonically increasing positive values within
each group that define the time of the dose, observation and/or covariate
measurements.

® Zero or more dosing columns — Create one dosing column for each
compartment being dosed. In each column, specify positive values
representing doses in amount that are added to a species. Use 0 or NaN to
specify that no dose was applied at the specified time. This is useful for
times when an observation was recorded but no dose was applied.

e Zero, or more rate columns — Specify positive values. Zero specifies an
infinite rate and NaN specifies that no rate applies. The rate column is
associated with a dosing column and defines the rate at which the dose
1s administered.

® Zero or more observation columns — Specify numeric values or NaNs. You
can only specify one observation value at a particular time for each group.
NaN values define that no observation was recorded at the specified time.
This is useful for times when a dose was applied but no observation was
recorded.

e Zero or more covariate columns — Specify numeric values or NaNs. Each
value defines the covariate value at the specified time. NaN values define
that no covariate observation was recorded at the specified time.



Importing Data

Importing Data

In this section...

“Importing Data From NONMEM Formatted Files” on page 4-13
“Importing Data Using the dataset Function” on page 4-14
“Other Resources for Importing Data” on page 4-15

Importing Data From NONMEM Formatted Files

Use the sbionmimport function to import data from NONMEM formatted
files. To import the data without NONMEM interpretation of column headers,
see “Importing Data Using the dataset Function” on page 4-14.

To prepare the data file for import, remove any comments that are present
at the beginning of the file and select one of the following methods to import
your data:

If the data file contains only the column header values shown in “Support
for Importing NONMEM Formatted Files” on page 4-8, use the syntax
shown in the following example:

filename = 'C:\work\datafiles\dose.xls';
ds = sbionmimport(filename);

If the data file has column header labels different from the table shown in
“Support for Importing NONMEM Formatted Files” on page 4-8 and you
want to apply NONMEM interpretation of headers:

1 Create a NONMEM file definition object. This object lets you define
what the column headers in the data file mean in SimBiology. In the
following example, the column containing response values is CP, whereas
in NONMEM formatted files the column is labelled DV.

To use the tobramycin data set [1], create a NONMEM file definition
object and define the following:

def = sbionmfiledef;
def.DoseLabel = 'DOSE';
def.GroupLabel = 'ID';
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def.TimeLabel = 'TIME';

def.DependentVariablelLabel = 'CP';
def.MissingDependentVariablelLabel = 'MDV';
def.EventIDLabel = 'EVID';

def.ContinuousCovariatelLabels = {'WT', 'HT', 'AGE', 'SEX',

Your file can contain any name for column headings. See sbionmfiledef
for the list of properties you can configure in the NONMEM file
definition object.

Use the sbionmimport function to import your data file with the column
header definitions as specified in the NONMEM file definition object.
For example, browse to matlabroot/toolbox/simbio/simbiodemos/
(where matlabroot is the folder where MATLAB is installed).

[ds, PKDataObj] = sbionmimport('tobramycin.txt', def,
'TreatAsEmpty', '."');

This example shows you how to obtain the PKData object, PKDataObj,
while importing, since you will use the PKData object in fitting the
model later.

The sbionmimport function accepts property-name-value pairs accepted
by dataset. For example, if the data set does not contain column
headers, use 'ReadVarNames', false to specify that sbionmimport
should read values from the first row of the file.

For information about creating a model to fit the data, see “Creating PK
Models” on page 4-19.

Importing Data Using the dataset Function

Use the dataset function to import tabular data with named columns into an
array that you can use in fitting and analysis at the command line. Use this
function when you want to import the data without NONMEM interpretation
of column headers. The dataset function lets you specify parameter/value
pair arguments in which you can specify options such as the type of delimiter,
and whether the first row contains header names. For more information,

see dataset.
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http://www.mathworks.com/access/helpdesk/help/toolbox/stats/dataset.html

Importing Data

To prepare the data file for import, remove any comments that are present
at the beginning of the file.

Examples:

% text files

data = dataset('file', 'tobramycin.txt')

% text files with . in place of missing values

data = dataset('file', 'tobramycin.txt', 'TreatAsEmpty', '.')

% For Excel files
data = dataset('xlsfile', 'tobramycin.xls')

You can also construct the dataset array from variables in the MATLAB
Workspace.
% Create a 10x2 array
X = rand(10,2);
% Construct a dataset array containing x
ata = dataset({x(:, 1), 'Columni'}, {x(:,2), 'Column2'})

o

If you import the data as separate variables containing doubles, you can
construct the dataset array by concatenating the variables.

o°

Create 2 10x1 vectors

X = rand(10,1);
y = rand(10,1);
% Construct a dataset array containing x and y

data = dataset({x, 'Columni'}, {y, 'Column2'})

After you finish analyzing your data, you can export any new variables to
a variety of file formats. The “Exporting Data” section of the MATLAB
documentation describes how to export data from the MATLAB Workspace.

Other Resources for Importing Data

For detailed information about supported data formats and the functions
for importing data into the MATLAB Workspace, see the “Importing Data”
section of the MATLAB documentation. You also can import data using the
MATLAB Import Wizard (see “Tips for Using the Import Wizard” in the
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MATLAB documentation). Use the Import Wizard, to import data as text files
(such as .txt and .dat), MAT-files, and spreadsheet files, (such as .x1s).

The MATLAB Import Wizard processes the data source. The wizard
recognizes data delimiters, as well as row or column headers, to facilitate the
process of data selection and importation into the MATLAB Workspace. You
can import the data to the SimBiology desktop from the MATLAB Workspace.
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Creating Pharmacokinetic Models

In this section...

“Overview” on page 4-17

“How SimBiology Models Represent Pharmacokinetic Models” on page 4-17
“Creating PK Models” on page 4-19

“About Dosing Types” on page 4-21

“About Elimination Types” on page 4-24

“About Intercompartmental Clearance” on page 4-26

“Unit Conversion for Imported Data and the Model” on page 4-27

“Prerequisites for Using Custom SimBiology Models in Parameter Fitting”
on page 4-28

Overview

To start modeling, you can:

¢ Create a PK model using a model construction wizard that lets you specify
the number of compartments, the route of administration, and the type of
elimination.

¢ Extend any model to build higher fidelity models.
e Build or load your own model. Load a SimBiology project or SBML model.

How SimBiology Models Represent Pharmacokinetic
Models

The following figure compares a model as typically represented in
pharmacokinetics with the same model shown in the SimBiology model
diagram. For this comparison, assume that you are modeling administration
of a drug using a two-compartment model with any dosing input and linear
elimination kinetics. (The model structure remains the same with any dosing

type.)
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Typical representationof one tipe Sarne 2-cornpartment model as represented
of Z-compartment raodel in the SirBPiclogy desktop
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Note the following:

¢ SimBiology represents the concentration or amount of a drug in a
given compartment or volume by a species object contained within the
compartment.

¢ SimBiology represents the exchange or flow of the drug between
compartments and the elimination of the drug by reactions.

¢ SimBiology represents intercompartmental clearance by a parameter (Q)
which specifies the clearance between the compartments.

® SimBiology drives the dosing schedule with a combination of species (Drug
and/or Dose) and reactions (Dose -> Drug), depending on whether the
administration into the compartment follows bolus, zero-order, infusion, or
first-order dosing kinetics. For more information on the components added
and parameters estimated, see “About Dosing Types” on page 4-21.

You can also view this model as a regression function, y = f(k,u), where y
is the predicted value, given values of an input u, and parameter values k.
In SimBiology the model represents f, and the model is used to generate a
regression function if y, k, and u are identified in the model.
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Creating PK Models

To create a PK model with the specified number of compartments, dosing
type, and method of elimination:

1 Create a PKModelDesign object. The PKModelDesign object lets you specify
the number of compartments, route of administration, and method of
elimination, which SimBiology uses to construct the model object with the
necessary compartments, species, reactions, and rules.

pkm = PKModelDesign;

2 Add a compartment specifying the compartment name, and optionally,
the type of dosing, and the method of elimination. Also specify whether
the data contains a response variable measured in this compartment and
whether the dose(s) have time lags. For example, if using the tobramycin
data set [1], specify a compartment named Central, with Bolus for
the DosingType property, linear-clearance for the EliminationType
property, and true for the HasResponseVariable property.

pkc1 = addCompartment(pkm, 'Central', 'DosingType', 'Bolus’,
‘EliminationType', 'linear-clearance’,
'HasResponseVariable', true);

For a description of other DosingType and EliminationType property
values, see “About Dosing Types” on page 4-21 and “About Elimination
Types” on page 4-24.

For a description of the HasResponseVariable property, see
HasResponseVariable. At least one compartment in a model must

have a response. Although SimBiology supports multiple responses per
compartment, when adding compartments to a PKModelDesign object, you
are limited to one response per compartment.
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Note To add a compartment that has a time lag associated with any dose
that targets it, set the HasLag property to true:

pkc_lag = addCompartment(pkm, 'Central', 'DosingType', 'Bolus'’,

‘EliminationType', 'linear-clearance',
‘HasResponseVariable', true, 'HasLag', true);

Or after adding a compartment, set its HasLag property to true:

pkci1.HasLag = true;

3 Optionally, add a second compartment named Peripheral, with no dosing,
no elimination, and no time lag. Set the HasResponseVariable property
to true. If you are using the tobramycin data set [1], skip this step and
use only one compartment.

pkc2 = addCompartment(pkm, 'Peripheral', 'HasResponseVariable', true);

The model construction process adds the necessary parameters, including a
parameter representing intercompartmental clearance Q. You can add more
compartments by repeating this step. The addition of each compartment
creates a chain of compartments in the order of compartment addition, with
a bidirectional flow of the drug between compartments in the model.

Use the handle to the compartment (pkc1 or pkc2), to change compartment
properties.

4 Construct a SimBiology model object.

[modelObj, PKModelMapObj] = pkm.construct

The construct method returns a SimBiology model object (nodel0Obj) and
a PKMode1Map object (PKModelMapObj) that contains the mapping of the
model components to the elements of the regression function. For more
information about the PKModelMap object, see “Defining Model Components
for Observed Response, Dose, Dosing Type, and Estimated Parameters”
on page 4-29.
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Note If you change the PKModelDesign object, you must create a new
model object using the construct method. Changes to the PKModelDesign
do not automatically propagate to a previously constructed model object.

5 Perform parameter fitting as shown in “Fitting Pharmacokinetic Model
Parameters” on page 4-34.

The model object and the PKMode1lMap object are input arguments for the
sbionlmefit, sbionlmefitsa and sbionlinfit functions used in parameter
fitting.

For information on ... See ...

Dosing types “About Dosing Types” on page 4-21

Elimination types “About Elimination Types” on page 4-24

Parameter fitting “Fitting Pharmacokinetic Model
Parameters” on page 4-34

Simulating the model and a e “About Simulation Settings and

description of configuration Specifying Alternate Values for Initial

sets Estimates” on page 4-51

® “Simulating Models” on page 3-3

About Dosing Types

When creating models, SimBiology creates the following model components
for each compartment in the model, regardless of the dosing type:

¢ Two species (Drug_CompartmentName and Dose_CompartmentName) for each
compartment.

® A reaction (Dose_CompartmentName -> Drug_CompartmentName) for each
compartment, governed by mass action kinetics.

® A parameter (ka_CompartmentName) for each compartment, representing
the absorption rate of the drug when absorption follows first-order kinetics.
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This is the forward rate parameter for the Dose_CompartmentName ->
Drug_CompartmentName reaction.

® A parameter (TkO_CompartmentName) for each compartment, representing
the duration of drug absorption when absorption follows zero-order kinetics.

® A parameter (TLag_CompartmentName) for each compartment, representing
the time lag for any dose that targets that compartment and also that is
specified as having a time lag.

For dosing types that have a fixed infusion or absorption duration (infusion
and zero-order), you can use overlapping doses. The doses are additive.

The following table describes the dosing types, the default parameters to
estimate, and lists the model components created and used for dosing.

Dosing Type | Description SimBiology Model Default
Components Used Parameters to
Estimate
''(empty No dose The species None
string) (Drug_CompartmentName)
in each compartment
SimBiology Assumes that the drug | The species None
desktop — amount is increased (Drug_CompartmentName)
bolus instantly at the dose in each compartment
time.
Command

line — Bolus

In the SimBiology
model, the initial
concentration of the
drug is based on dose
amount and volume
of the compartment
containing the drug.
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Dosing Type | Description SimBiology Model Default
Components Used Parameters to
Estimate
SimBiology Assumes that the The species None
desktop — infused drug amount (Drug_CompartmentName)
infusion increases at a constant | in each compartment
Command }{now.n absorption (or
. infusion) rate over a
line — .
) known duration.
Infusion
The imported data set
must contain the rate
and not an infusion
duration. SimBiology
uses this information
to change the species
concentration at the
constant rate over the
duration specified in
the data set.
SimBiology Assumes that the drug | ® The species TkO_CompartmentName
desktop — is added at a constant Drug_CompartmentName (absorption
zero-order rate over fixed, but in each compartment duration)
Command Bl o, ® The parameter
line — (TkO_CompartmentName)
ZeroOrder in each compartment that
has zero-order dosing. This
parameter represents the
duration of drug absorption
SimBiology Assumes that the rate ®* A species ka_CompartmentName
desktop — at which the drug (Dose_CompartmentName) (absorption rate)
first-order |[is absorbed is not representing the dose
constant. amount before it is absorbed
Command
line — In the SimBiology ® A species
FirstOrder model, absorption (Drug_CompartmentName) for

rate is assumed

each compartment
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Dosing Type

Description

SimBiology Model
Components Used

Default
Parameters to
Estimate

to be governed by
mass-action kinetics.

® A parameter
(ka_CompartmentName)

representing the absorption

rate of the drug

e A MassAction reaction
(Dose_CompartmentName
> Drug_CompartmentName)
with forward rate parameter

(ka_CompartmentName)

If you are using a custom model, or want to simulate a model with the dosing
schedule applied, see the following additional sources of information:

For information on ...

See ...

Preparing the model before

simulating

on page 4-28

“Prerequisites for Using Custom
SimBiology Models in Parameter Fitting”

About Elimination Types

Elimination Type

Description

SimBiology Model
Components Created

Default Parameters
to Estimate

® A parameter

SimBiology Assumes simple
desktop — Linear mass-action
{Elimination kinetics in the

Rate, Volume}

Command line —
"linear'

elimination of

the drug. In

the SimBiology
model, elimination
is specified by
mass-action
kinetics with the

representing the
elimination rate
(ke_CompartmentName)

e A MassAction
reaction (drug >
null) with forward
rate parameter
(ke_CompartmentName)

e Compartment
volume
(Capacity property)

¢ Elimination
rate constant
(ke_CompartmentName)

® Inter-compartmental
clearance (Q) when
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Elimination Type

Description

SimBiology Model
Components Created

Default Parameters
to Estimate

elimination rate
constant specified
by the forward rate
parameter (ke).

specific to the
compartement

there is more than
one compartment.

See “About
Intercompartmental
Clearance” on page
4-26.

SimBiology
desktop — Linear
{Clearance,
Volume}

Command line —
"linear-clearance

Assumes simple
mass-action
kinetics in the
elimination of

the drug. In the
SimBiology model,
similar to Linear
{Elimination
Rate, Volume}.
But, in addition,
this option lets you
specify the model in
terms of clearance
(C1) where, C1 = ke
* volume).

® A parameter
representing
the clearance
(C1_CompartmentName)

®* A parameter
representing
the elimination
rate constant
(ke_CompartmentName)

e An
InitialAssignment
rule that initializes
ke_CompartmentName
based on the
initial values for
Cl_CompartmentName
and compartment
volume

e A MassAction
reaction (drug >
null) with forward
rate parameter
(ke_CompartmentName)

e Compartment
volume

(Capacity property)

e (Clearance
(C1_CompartmentName)

® Inter-compartmental
clearance (Q) when
there is more than
one compartment.

See “About
Intercompartmental
Clearance” on page
4-26.

SimBiology desktop
— Enzymatic
(Michaelis-Menten)

Assumes that
elimination 1is
governed by

® Parameter
representing the

¢ Compartment
volume

(Capacity property)
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Elimination Type

Description SimBiology Model Default Parameters
Components Created to Estimate

Command line —
‘enzymatic'

Michaelis-Menten Michaelis constant,

[ ]
kinetics. (Km_CompartmentName) s

(Km_CompartmentName)

® A parameter for
maximum velocity
(Vm_CompartmentName

® Parameter
(Vm_CompartmentName)

® Inter-compartmental
clearance (Q) when
there 1s more than
one compartment.

® A reaction with
Michaelis-Menten
kinetics (drug ->
null), with kinetic

law parameters See “About
Vm_CompartmentName Intercompartmental
and Clearance” on page
Km_CompartmentName 4-26

About Intercompartmental Clearance

The compartments created when you generate a SimBiology model form a
chain and each pair of linked compartments are connected by a transport
reaction similar to linear elimination. The addition of two compartments,
C1 and C2, generates a reversible mass-action reaction C1.Drug_C1 <->
C2.Drug. The forward rate parameter is the compartmental clearance, Q,,,
divided by the volume of C1. The reverse rate parameter is Q,,, divided by
the volume of C2.

The process of adding each pair of compartments in the chain C, and C,
generates the following model components:

* A parameter Q,, representing the compartmental clearance between those
two compartments. This parameter is added to the list of parameters to be
estimated (PKModelMapObj .Estimated property).

® A parameter (kmn) representing the rate of transfer of the drug from Cm
to Cn, where k,, = Q, /V,.

® A parameter (knm) representing the rate of Cn to Cm, where k,, = Q,./V,.
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® A reversible mass-action reaction between the two compartments,
Cm.Drug_Cm <-> Cn.Drug_Cn, with forward rate parameter kmn, and
reverse rate parameter knm.

® An initial assignment rule that initializes the value of the parameter kmn,
based on the initial values for Cm and Qmn.

® An initial assignment rule that initializes the value of the parameter knm,
based on the initial values for Cn and Qmn.

Unit Conversion for Imported Data and the Model

Unit conversion converts the matching physical quantities to one consistent
unit system in order to resolve them. This conversion is in preparation for
correct simulation, but SimBiology returns the physical quantities in the
model in units that you specify.

Regardless of whether unit conversion is on or off, you must express dosing
data in amount. By default, Unit Conversion is off, so you must ensure
that units for the data and the model are consistent with one another.

If Unit Conversion is on, you must specify units. If using the SimBiology
desktop, specify units in the Raw Data tab, when data is selected in the
Project Explorer. If using the command line, specify units in the PKData
object.

Parameters in the model have default units. If unit conversion is on, you can
change the units as long as the dimensions are consistent. These default units,
which you might use to specify the values for the initial guess, are as follows.

Physical Quantity or Model Unit

Parameter

Capacity (compartment volume) liter

First-order elimination rate 1/second

Km — Michaelis constant milligram/liter
Vm — (Vmax) Maximum milligram/second
reaction-velocity (Michaelis-Menten

kinetics)

Clearance liter/second
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Physical Quantity or Model Unit
Parameter

TkO (absorption duration) second
ka (absorption rate) 1/second

Use the configuration settings options to turn unit conversion on or off. For
more information see, “Simulating Models” on page 3-3 in the SimBiology
documentation.

See “How Reaction Rates Are Evaluated” on page 1-19 in the SimBiology
documentation for more information on dimensional analysis for reaction
rates.

Prerequisites for Using Custom SimBiology Models
in Parameter Fitting

Overview

If you created a PK model using either the PKModelDesign object’s construct
method at the command line or the wizard in the SimBiology desktop, you
can skip this section. This section provides information about working with

a custom SimBiology model.

When using a custom model, you must provide information about whether
dosing is applicable and define which components of the SimBiology model
represent the observed response, the dose, and the estimated parameters.
Use the PKModelMap object to define these settings as shown in “Defining
Model Components for Observed Response, Dose, Dosing Type, and Estimated
Parameters” on page 4-29.

Another point to consider is the solver you use in performing simulations.
During fitting the solver type must be sundials to support any events in the
model. See “About Simulation Settings and Specifying Alternate Values for
Initial Estimates” on page 4-51, for more information.
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Defining Model Components for Observed Response, Dose,
Dosing Type, and Estimated Parameters

The PKModelMap object holds information about the dosing type and defines
which components of the SimBiology model represent the observed response,
the dose, and the parameters to be estimated.

If you are using a custom SimBiology model that you did not create using
either the PKModelDesign object’s construct method or the wizard, you must
create a PKModelMap object to define these relationships.

Consider the following regression function, y = f(k,u), where y is the
measured or observed response, given values of an input u, and parameter
values k. In SimBiology, the model represents f, which is used to generate
the regression function, if y, k, and u are identified in the model. You must,
therefore, use the PKMode1lMap object to define which components of the
model represent y, k, and u. If applicable, the PKMode1lMap object also needs
information on the type of dosing or input being given to the model.

1 Import an SBML model:
modelObj = sbmlimport('lotka');
2 Create a PKModelMap object:
PKModelMapObj = PKModelMap;

3 Use the name of the model component to specify the corresponding property
in the PKModelMap object.

Model Component Represents | PKModelMap Object Property
Object being driven by an input Dosed

Measured response Observed

Parameters to be estimated Estimated

For example:

set (PKModelMapObj, 'Observed', 'unnamed.y1');
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set (PKModelMapObj, 'Estimated', {'Reactioni.c1', 'Reaction2.c2'});

Note When specifying species names, qualify the name with the
compartment name in the form compartmentName.speciesName (for
example, nucleus.DNA). For names of parameters scoped at the reaction
level, use reactionName.parameterName. For parameters scoped at the
model level, you do not have to qualify the name.

4 Use the DosingType property to specify the type of dosing, if applicable.
The allowed types are '', 'Bolus', 'Infusion', 'FirstOrder', and
‘ZeroOrder'.

For example:

set (PKModelMapObj, 'DosingType', 'Bolus');

Note When using custom models with DosingType set to zero-order, you
must include a parameter that represents the duration of drug absorption.
Set the ZeroOrderDurationParameter property of the PKModelMap object
to the name of the duration parameter. For example, set (PKModelMapObj,
‘ZeroOrderDurationParameter', 'Kdo');.

The previous example sets the observed response to a species y1, contained
by a compartment (unnamed), and sets the parameters to be estimated to
the parameters ¢c1 and c2 that are scoped to the reactions, Reaction1 and
Reaction2, respectively.

For information on ... See ...

PKModelMap object properties | PKModelMap object Dosed,
and allowed values DosingType, Estimated, and Observed,
ZeroOrderDurationParameter

Allowed dosing types “About Dosing Types” on page 4-21
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For information on ... See ...

Parameter scoping “When Reactions, Rules, and Events
Specify Parameters” on page 1-14

Parameter fitting “Fitting Pharmacokinetic Model
Parameters” on page 4-34

Dosing Multiple Compartments in a Model

1 Use the name of the model component to specify the Dosed property in
the PKMode1lMap object.

For example, assume that a model contains two compartments named
Central and Peripheral. Specify the species names in the dosed
compartments. For example:

set (PKModelMapObj, 'Dosed, {'Central.Drug_Central',
'Peripheral.Drug_Peripheral'});

2 Use the DosingType property to specify the type of dosing if applicable.
The allowed types are '', 'Bolus', 'Infusion', 'FirstOrder’, and
'ZeroOrder'. When specifying dosing for multiple compartments, the
order in the Dosed property is the order in which the dosing type is applied.

For example, if Central takes zero-order dosing and Peripheral takes
a first-order dosing enter:

set(PKModelMapObj, 'DosingType', {'ZeroOrder', 'FirstOrder'});

3 Because the model includes zero-order as a DosingType, you must include
a parameter that represents the duration of drug absorption and is used
when simulating the model with dosing information or during fitting. Set
the ZeroOrderDurationParameter property of the PKModelMap object to
the name of the duration parameter. For example,

set(PKModelMapObj, 'ZeroOrderDurationParameter', {'Kdo', ''})

Specify the parameters in the same order as the species in the Dosed
property.
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Parameter Fitting in Pharmacokinetic Models

In this section...

“Parameter Fitting Functionality ” on page 4-32

“Prerequisites for Parameter Fitting” on page 4-33

Parameter Fitting Functionality

SimBiology lets you perform individual and population fitting on grouped
data. This functionality uses Statistics Toolbox features (Version 7.3 or later).

¢ Individual fit — Fit data separately for each individual using the nonlinear
least squares method, estimate parameters, and calculate residuals and
the estimated coefficient covariance matrix.

e Population fit — Estimate the fixed effects and the random sources of
variation on parameters, using nonlinear mixed-effects models.

You can use the following methods to estimate the fixed effects:
= LME — Linear mixed-effects approximation

= RELME — Restricted LME approximation

= FO — First-order estimate

= FOCE — First-order conditional estimate
The following results are returned for population fitting:

¢ The maximized log-likelihood for the fitted model

® The estimated error variance for the fitted model

® The Akaike information criterion for the fitted model

¢ The Bayesian information criterion for the fitted model
¢ The standard errors for the estimates of the fixed effects
¢ The error degrees of freedom for the model

¢ The weighted residuals for the fitted model
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In addition, you can generate diagnostic plots that show:

The predicted time courses and observations for an individual or the
population

Observed versus predicted values
Weighted residuals versus time, group, or predictions
Distribution of the weighted residuals

A box-plot for random effects or parameter estimates from individual fitting

Prerequisites for Parameter Fitting

Before you fit parameters, the SimBiology desktop or the MATLAB Workspace
must contain the following:

Data to use in the fitting (See “Importing Data — Supported Files and
Data Types” on page 4-8 for more information.)

A model to fit (See “Creating Pharmacokinetic Models” on page 4-17 for
more information.)

If you plan to use the command line, see the following for more information:

“Fitting Pharmacokinetic Model Parameters” on page 4-34
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Fitting Pharmacokinetic Model Parameters

In this section...

“Fitting Parameters” on page 4-34

“Specifying and Classifying the Data to Fit” on page 4-35

“Setting Initial Estimates” on page 4-37

“Specifying a Nonlinear, Mixed-Effects Model” on page 4-38
“Specifying a Covariate Model” on page 4-40

“Specifying the Covariance Pattern of Random Effects” on page 4-41
“Specifying an Error Model” on page 4-43

“Specifying Parameter Transformations” on page 4-44

“Performing Population Fitting Using sbionlmefit or sbionlmefitsa” on page
4-45

“Performing Individual Fitting Using sbionlinfit” on page 4-49

“About Simulation Settings and Specifying Alternate Values for Initial
Estimates” on page 4-51

Fitting Parameters

The following steps show one of the workflows you can use at the command
line to fit a PK model and estimate parameters:

1 Import data as shown in “Importing Data” on page 4-13.

2 Specify the structural model by creating a PK model as shown in “Creating
PK Models” on page 4-19. Alternatively, if you have a SimBiology model
that you want to use in fitting, see “Prerequisites for Using Custom
SimBiology Models in Parameter Fitting” on page 4-28.

3 Classify the data set to use in fitting. See “Specifying and Classifying the
Data to Fit” on page 4-35.

4 Specify the initial guesses for the parameters to be estimated, as shown in
“Setting Initial Estimates” on page 4-37.
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5 Perform individual or population fits:
¢ For individual fits:
= (Optional) Set tolerances and specify maximum iterations.
® For population fits:
= Specify the statistical model:

Specify the covariate model and the covariance matrix. See
“Specifying a Covariate Model” on page 4-40 and “Specifying the
Covariance Pattern of Random Effects” on page 4-41.

Specify the error model. See “Specifying an Error Model” on page
4-43.

= (Optional) Set tolerances and specify maximum iterations.

6 Obtain and visualize results.

Specifying and Classifying the Data to Fit

In order to use the imported data in fitting, you must identify required
columns in the data set that was previously imported as shown in “Importing
Data” on page 4-13.

Use the PKData object to specify the data set containing the observed data to
use in fitting. The properties of the PKData object specify what each column in
the data represents.

To create the PKData object:

1 Create the PKData object for the data set data.

pkDataObject = PKData(data);

PKData assigns the data set data to the read-only DataSet property.

2 Use the column headers in the data set to specify the following properties
for the column in the data set.
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Column in Data Set Represents

PKData Object Property

Group identification labels GroupLabel
Independent variable IndependentVarLabel
(For example, time)

Dependent variable DependentVarLabel
(For example, measured response)

Amount of dose given DoselLabel

Rate of infusion (when applicable). | RatelLabel

Data must contain rate

(amount/time) and not infusion

time.

Covariates CovariatelLabels

(For example, age, gender, weight)

For example, for the tobramycin data set [1]:

pkDataObject.GroupLabel

pkDataObject.IndependentVarLabel
pkDataObject.DependentVarLabel

pkDataObject.DoselLabel
pkDataObject.CovariatelLabels

IIDI;

'Time';
'Response’;
'Dose ' ;
{'WT','HT', 'AGE",

'SEX',

'CLCR'};

Note For the subset of data belonging to a single group (as defined by
the column in your data set that represents group identification labels,

which you map to the GroupLabel property), the software allows multiple
observations made at the same time. If this is true for your data, be aware

that:

¢ These data points are not averaged, but fitted individually.

¢ Different number of observations at different times cause some time

points to be weighted more.
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Tip If dosing applies to more than one compartment in the model, specify
the DoseLabel property as follows:

pkDataObject.DoseLabel = {'Dosei1', 'Dose2'};

Dose1 and Dose2 are names of columns containing dose information for
compartments. A one-to-one relationship must exist between the number
and order of elements in the DoseLabel property and the Dosed property of
the corresponding PKModelMap object.

Tip If your model measures multiple responses, specify the
DependentVarLabel property as follows:

pkDataObject.DependentVarLabel = {'Responsel’', 'Response2'};

Responsel and Response2 are names of columns containing response
measurements. A one-to-one relationship must exist between the number
and order of elements in the DependentVarLabel property and the
Observed property of the corresponding PKMode1lMap object.

When you assign a column containing group identification labels to the
GrouplLabel property, PKData sets these read-only properties as follows:

¢ The GroupNames property is set to the unique names found in the group
column.

® The GroupID property is set to an integer corresponding to the unique
names found in the group column.

Setting Initial Estimates

To set the initial estimates (or initial guesses) for the parameters with fixed
effects to estimate, first identify the sequence of the parameters in the
model by querying the PKMode1lMap object. Next, construct a vector, betaoO,
containing the initial conditions. For information about PKModelMap objects,
see step 4 in “Creating PK Models” on page 4-19.

1 Query the Estimated property of the PKModelMap object:
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PKModelMapObj.Estimated

MATLAB returns the sequence of the parameters to be estimated. For
example:

ans =

‘Central’
'Cl_Central'’

2 Set the initial estimates for the parameters. For example:

beta0 = [10.0, 1.0];

For information on ... See ...

The parameters added to the model
® “About Dosing Types” on page

4-21
e “About Elimination Types” on
page 4-24
Default units for the above “Unit Conversion for Imported Data
parameters and the Model” on page 4-27

Specifying a Nonlinear, Mixed-Effects Model

Suppose data for a nonlinear regression model falls into one of m distinct
groups i = 1, ..., m. (Specifically, suppose that the groups are not nested.) To
specify a general, nonlinear, mixed-effects (NLME) model for this data:

1 Define group-specific model parameters @, as linear combinations of fixed
effects f and random effects b,.

2 Define response values y; as a nonlinear function f of the parameters and
group-specific covariate variables X,.

The model is:
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®; = Alﬁ + Bibi7 where bi [ N(O,‘P)
yi =1, X))+
Alternatively,log y; =log f(¢;, X;) +¢;

This formulation of the nonlinear, mixed-effects model uses the following
notation:

o, A vector of group-specific model parameters
i A vector of fixed effects, modeling population parameters
b, A vector of multivariate, normally distributed, group-specific,

random effects
A group-specific design matrix for combining fixed effects

A group-specific design matrix for combining random effects

X =

A data matrix of group-specific covariate values

A data vector of group-specific response values

~

A general, real-valued function of ¢; and X;

m o~ 2

® For sbionlmefit, you can specify different error models as shown
in “Specifying an Error Model” on page 4-43.

® For sbionlmefitsa, you can specify different error models as
shown in “Specifying an Error Model” on page 4-43.
P A covariance matrix for the random effects

The error variance, assumed to be constant across observations

For example, consider a one-compartment model with first-order dosing
and linear clearance. The group-specific parameters (¢) in the model are
clearance (Cl), compartment volume (V), and absorption rate constant (k).
From the model:

Cly (1 0 0)Ba) (1 0 OY ba
Vi=lo 1 0] B |+0 1 0f by
ka] (0 0 1 B ] |0 0 18
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In SimBiology, B, is an identity matrix. That is, sbionlmefit does not support
the specification of a different random-effects design matrix. You can alter
the design matrices, as necessary, to introduce weighting of individual effects.

The Statistics Toolbox function nlmefit fits the general, nonlinear,
mixed-effects model to data, estimating the fixed and random effects. The
function also estimates the covariance matrix W for the random effects.
Additional diagnostic outputs allow you to assess trade-offs between the
number of model parameters and the goodness of fit. See “Mixed-Effects
Models” in the Statistics Toolbox documentation for more information.

Specifying a Covariate Model

If the NLME model assumes a group-dependent covariate such as weight
(w), the model becomes:

cly (1 0 0 w f;’ 1 0 0 ba

V=0100BV+010bV

ko] (0 0 1 olf"* | lo o 15,
Pw

Thus, the parameter for clearance (Cl) for an individual is
CL=Bey+ Beyyy ™ it by,

Assuming that 1 is the initial estimate for S, and 0 is the initial estimate
for B.,,,, use the PKCovariateModel.Expression property to define the
covariate model.

covmodel = PKCovariateModel;
covmodel.Expression = ({'Cl = 1*exp(0*weight)'});

Use the PKCovariateModel.getInitialEstimate method to determine the
order of elements:

[initialEstimates elementNames] =
covmodel.getInitialEstimate (PKModelMapObj, PKDataObj)];

disp('Element Names:');

disp(elementNames);

Your output appears as follows:
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Element Names:
‘Central'’
'Cl_Central'’
'Central/WEIGHT'
'Cl _Central/WEIGHT'

Update the initial estimates using the values estimated from fitting the base
model (model without covariate effects):

covmodel.setInitialEstimate (PKModelMapObj, PKDataObj,
[nlmeResults.estimate' 0 0 1);

disp('Covariate model expression with updated initial estimates:');

disp(covmodel.Expression)

Your output appears as follows:

Covariate model expression with updated initial estimates:
'Central = 1.40855891462797 * exp(0* (WEIGHT))'
'Cl_Central = 0.00613734942978561 * exp(0* (WEIGHT))'

Specifying the Covariance Pattern of Random Effects

By default, the function you use to perform population fits (nlmefit or
nlmefitsa) assumes a diagonal covariance matrix (no covariance among the
random effects). To specify a different covariance pattern of random effects,
use the 'CovPattern' option. In the previous example, assuming that each of
the parameters has random effects and that C/ and V exhibit covariance, the
covariance pattern of random effects would be a logical array:

110
110
0 01

1 Create an options struct with the specified covariance pattern:

options.CovPattern = [1, 1, 0; 1, 1, 0; 0, 0, 1];

2 Specify the arguments for sbionlmefit or sbionlmefitsa:

[results, simdatal, simdataP] = sbionlmefit(modelObj,...
PKModelMapObj, PKDataObj, betaO, options)
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If you are using the tobramycin data set [1], do the following:

1 Create an options struct with the specified covariance pattern:

options.CovPattern = [1, 0; 0, 1];

2 Specify the arguments for sbionlmefit:

[results, simdataI, simdataP] = sbionlmefit(modelObj,...
PKModelMapObj, PKDataObj, betaO, options)

results =

estimate: [2x1 double]
phil: [2x97 double]
phiP: [2x97 double]
beta: [2x1 double]
psi: [2x2 double]
stats: [1x1 struct]
b: [2x97 double]

results.estimate
ans =

21.6535
3.7172

results.beta

ans
3.0752
1.3130

For more information, see nlmefit or nlmefitsa in the Statistics Toolbox
documentation.
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Fitting the model and estimating the covariance matrix W often leads to
further refinements. A relatively small estimate for the variance of a random
effect suggests that it can be removed from the model. Similarly, relatively
small estimates for covariances among certain random effects suggest that a
full covariance matrix is unnecessary. Since random effects are unobserved,
W must be estimated indirectly. Specifying a diagonal or block-diagonal
covariance pattern for W can improve convergence and efficiency of the fitting
algorithm.

Specifying an Error Model

You can specify error models with the sbionlmefitsa or sbionlmefit
function.

To define an error model, use the ErrorModel option. Each model defines the
error using a standard normal (Gaussian) variable e, the function value f, and
one or two parameters, a and b. You can specify the following error models:

® constant: y = f + a*e

® proportional: y = f + b*f*e

® combined: y = f + (a+b*f)*e

® exponential: y = f*exp(a*e) or log(y) = log(f) + a*e

1 Use ErrorModel in nlmefitsa or nlmefit. Create a struct with the
specified error model. For example:

options.ErrorModel = 'proportional’;

2 (Optional) Specify starting values for parameters of the error model using
ErrorParameters. For example:

options.ErrorParameters = 1;

Tip To specify a and b for combined, enter:

options.ErrorParameters = [1 1];
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3 Specify the arguments for sbionlmefitsa or sbionlmefit, as shown in
“Performing Population Fitting Using sbionlmefit or sbionlmefitsa” on
page 4-45.

See also nlmefitsa or nlmefitin the Statistics Toolbox documentation.

Specifying Parameter Transformations

To specify parameter transformations, use the ParamTransform option in
sbionlinfit, sbionlmefit and sbionlmefitsa. The ParamTransform option
lets you specify either no transformation, or the log, probit, or logit
transformation.

The underlying algorithm in nlmefit assumes that parameters follow a
normal distribution. This assumption may not hold for biological parameters
that are constrained to be positive, such as volume and clearance. You may
specify a transformation function for the estimated parameters, so that the
transformed parameters follow a normal distribution.

By default, the SimBiology fitting functions choose a log transform for all
estimated parameters. Parameters that are constrained between the values 0
and 1, like absorption fraction, can be transformed by the probit or logit
transformations described below.

The probit function is the inverse cumulative distribution function (CDF)
associated with the standard normal distribution. To apply the probit
transform to a variable x in MATLAB, use the Statistics Toolbox function
norminv: t = norminv(x). To untransform a variable t, use the function
normcdf: X normcdf (t).

The logit function is the inverse of the sigmoid function. To apply the logit
transform to a variable x in MATLAB, use the following expression: t =
log(x) - log(1-x). Tountransform the variable t, use x = 1/(1+exp(-t)).

1 For the ParamTransform option, specify a vector of values equal to the
number of parameters to be estimated. The values must be one of the
integer codes listed in nlmefitsa or nlmefit specifying the transformation
for the corresponding value of the parameters to be estimated. For example

options.ParamTransform = [0 1 2];
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See nlmefit and nlmefitsa for more information.

2 Specify the arguments for sbionlmefit or sbionlmefitsa, as shown in
“Performing Population Fitting Using sbionlmefit or sbionlmefitsa” on
page 4-45.

For individual fitting, see “Performing Individual Fitting Using sbionlinfit”
on page 4-49.

Performing Population Fitting Using sbionlmefit or
sbionlmefitsa

The sbionlmefit and sbionlmefitsa functions let you specify a SimBiology
model that you want to use in fitting. These functions use the nlmefit and
nlmefitsa functions from the Statistics Toolbox to fit data with both fixed
and random sources of variation using nonlinear mixed-effects and return
the estimates. nlmefit fits the model by maximizing an approximation to
the marginal likelihood with random effects integrated out assuming the
following:

¢ Random effects are multivariate, normally distributed, and independent
between groups.
® Observation errors are independent, identically normally distributed, and

independent of random effects.

1 (Optional) Set the tolerance and maximum iteration options. Use an
options structure that is an argument for sbionlmefit:

options.Options.TolX = 1.0E-4;
=1

options.Options.TolFun .0E-4;
options.Options.MaxIter = 200;

2 Specify the model object, the PKModelMap object, the PKData object, the
PKCovariateModel object, a vector containing the initial estimates for
the fixed effects, and the options:

[results, simdatal, simdataP] = sbionlmefit(modelObj,...
PKModelMapObj, pkDataObject, PKCovariateModelObject, betaO, options);

or, if options includes an error model, you must use shionlmefitsa:
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[results, simdatal, simdataP] = sbionlmefitsa(modelObj,...
PKModelMapObj, pkDataObject, PKCovariateModelObject, betaO, options);

Note If your population fit uses multiple doses, make sure each element
in the Dosed property of the PKModelMap object is unique.

Note In your PKData object, for each subset of data belonging to a single
group (as defined in the data column specified by the GroupLabel property),
the software allows multiple observations made at the same time. If this is
true for your data, be aware that:

¢ These data points are not averaged, but fitted individually.

¢ Different number of observations at different times cause some time
points to be weighted more.

sbionlmefit and sbionlmefitsa return the following:

® A results structure containing estimated values and other statistics.
For more information, see the sbionlmefit and sbionlmefitsa
reference pages.

® simdatal, a SimData object containing the data from simulating the
model using the estimated parameter values for individuals, which
includes both the fixed and random effects.

® simdataP, SimData object containing the data from simulating the
model using the estimated parameter values for the population, which
includes only the fixed effects.

3 Plot the data from the data set. For example, in the imported data set
used for fitting, ds, ID, Time, and Response are the column headers for
the columns containing group IDs, time, and the response variable,
respectively.

p = sbiotrellis(ds, 'ID', 'Time', 'Response’)
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Note If your data set has multiple responses, with column headers
Response1 and Response?2 containing the response variables, you plot the
data as follows:

Response = {'Responsel', 'Response2'}
p = sbiotrellis(ds, 'ID', 'Time', Response)

4 Use the plot method on the trellis plot object p, returned by sbiotrellis
to overlay data, using default values for the second and third input
arguments.

p.plot(simdataP, [], '', PKModelMapObj.Observed);

For a description of the results, see sbionlmefit in the SimBiology
documentation.

For more information, see the following topics in the Statistics Toolbox
documentation:

® “Nonlinear Regression Models”
* “Mixed-Effects Models”

® nlmefit

Obtaining the Status of Fitting

The sbiofitstatusplot function dynamically plots the progress of the fitting
task. During the task, the function plots the fixed effects (B), the estimates
for the diagonal elements of the covariance matrix for the random effects
(P), and the log-likelihood. This functionality is useful for large and complex
models when you expect the time to return the results to be longer than a few
minutes. Use the options structure that is an argument for the sbionlmefit
function:

% Create options structure with 'OutputFcn'.
options.Options.OutputFcn = @sbiofitstatusplot;

% Pass options structure with OutputFcn to sbionlmefit function.
results = sbionlmefit(..., options);
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The following figure shows the type of plots obtained.
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Tips for interpreting status plots:

® The fitting function tries to maximize the log-likelihood. When the plot
begins to display a flat line, this might indicate that maximization is

o0 200 30

complete. Try setting the maximum iterations to a lower number to

reduce the number of iterations you need and improve performance. For
information on how to set iteration options, see “Performing Population

Fitting Using sbionlmefit or sbionlmefitsa” on page 4-45.
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® Plots for the fixed effects (8) and the estimates for the diagonal elements of
the covariance matrix for the random effects (&), should show convergence.
If you see oscillations, or jumps without accompanying improvements in
the log-likelihood, the model may be over-parameterized. Try the following:

= Reduce the number of fixed effects.
= Reduce the number of random effects.

= Simplify the covariance matrix pattern of random effects.

See also sbiofitstatusplot in the SimBiology documentation.

Performing Individual Fitting Using sbionlinfit

The sbionlinfit function lets you specify a SimBiology model to fit using the
nlinfit function (individual fit). The nlinfit function fits using nonlinear
least squares and returns parameter estimates, residuals, and the estimated
coefficient covariance matrix.

1 (Optional) Set the tolerance and maximum iteration options:

options.TolX = 1.0E-8;
options.TolFun = 1.0E-8;
options.MaxIter = 100;

2 Specify the model object, the PKModelMap object, the PKData object, a vector
containing the initial estimates for the fixed effects, and the options:

[results, simdataI] = sbionlinfit(modelobj,...
PKModelMapObj, PKDataObj, betaO, options);

Note If your individual fit uses multiple doses, make sure each element in
the Dosed property of the PKModelMap object is unique.
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Note In your PKData object, for each subset of data belonging to a single
group (as defined in the data column specified by the GroupLabel property),
the software allows multiple observations made at the same time. If this is
true for your data, be aware that:

® These data points are not averaged, but fitted individually.

e Different number of observations at different times cause some time
points to be weighted more.

sbionlinfit returns the following:

® A results array of structures, each containing the following for one
group:

- beta — Fitted coefficients
= R — Residuals

= J — Jacobian of modelObject

COVB — Estimated covariance matrix for the fitted coefficients
- mse — Estimate of the error of the variance term

e simdatal contains the data from simulating the model using the
estimated parameter values, for individuals.

Plot the data from the data set. For example, in the imported data set (ds),
ID, Time and Response are the column headers for the columns containing
group IDs, time, and the response variable respectively.

p = sbiotrellis(ds, 'ID', 'Time', 'Response')

Note If your data set has multiple responses, with column headers
Response1 and Response2 containing the response variables, you plot the
data as follows:

Response = {'Responseil', 'Response2'}
p = sbiotrellis(ds, 'ID', 'Time', Response)
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4 Use the plot method on the trellis plot object p, returned by sbiotrellis to
overlay data, using default values for the second and third input arguments.

p.plot(simdataI, [], '', PKModelMapObj.Observed);

For more information, see “Nonlinear Regression Models” and nlinfit in
the Statistics Toolbox documentation.

About Simulation Settings and Specifying Alternate
Values for Initial Estimates

Use the Variant object to store and apply alternate values for model
components during a simulation. For more information about variants and
how to add variants see .

Note The fitting functions, population fit (NLMEFIT) and individual
fit (NLINFIT), use the initial estimate values as the initial parameter
estimates when fitting parameters (overriding the values in the variant).
Specify initial estimate values, as shown in “Setting Initial Estimates” on
page 4-37.

Use the Configset object to change settings for simulations. For more
information about performing simulations, see shiosimulate. The model
object created using the PKModelDesign object’s construct method contains a
default configuration set that uses the sundials solver.

If you change the solver type in the configuration set during fitting,
SimBiology temporarily changes the solver to sundials to support events in
the model. SimBiology reverses the change after returning the results. If
you want to change tolerance options for simulations select a deterministic
solver and use the tolerance options provided in the deterministic solver. The
fitting functions (sbionlmefit or sbionlinfit) will use the tolerance options
specified in the deterministic solver.
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Creating Reaction Rates

¢ “Defining Reaction Rates with Mass Action Kinetics” on page A-2

¢ “Defining Reaction Rates with Enzyme Kinetics” on page A-8
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Defining Reaction Rates with Mass Action Kinetics

Definition of Mass Action Kinetics

Mass action describes the behavior of reactants and products in an elementary
chemical reaction. Mass action kinetics describes this behavior as an equation
where the velocity or rate of a chemical reaction is directly proportional to
the concentration of the reactants.

Zero-Order Reactions

With a zero-order reaction, the reaction rate does not depend on the
concentration of reactants. Examples of zero-order reactions are synthesis
from a null species, and modeling a source species that is added to the system
at a specified rate.

reaction: null -> P
reaction rate: k mole/second
species: P = 0 mole
parameters: k = 1 mole/second

Note When specifying a null species, the reaction rate must be defined in
units of amount per unit time not concentration per unit time.

Entering the reaction above into the software and simulating produces the
following result:
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Zero-Order Mass Action Kinetics

Note If the amount of a reactant with zero-order kinetics reaches zero before
the end of a simulation, then the amount of reactant can go below zero
regardless of the solver or tolerances you set.

First-Order Reactions

With a first-order reaction, the reaction rate is proportional to the
concentration of a single reactant. An example of a first-order reaction is
radioactive decay.

reaction: R -> P
reaction rate: k*R mole/(liter*second)
species: R = 10 mole/liter
P = 0 mole/liter
parameters: k 1 1/second

Entering the reaction above into the software and simulating produces the
following results:
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First-Order Mass Action Kinetics

Second-Order Reactions

A second-order reaction has a reaction rate that is proportional to the square
or the concentration of a single reactant or proportional to two reactants.
Notice the space between the reactant coefficient and the name of the
reactant. Without the space, 2R would be considered the name of a species.

reaction: 2 R -> P
reaction rate: k*R"2 mole/(liter*second)
species: R 10 mole/liter
P 0 mole/liter
parameters: k 1 liter/(mole*second)

Entering the reaction above into the software and simulating produces the
following results:
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Second-Order Kinetics with Single Reactant

With two reactants, the reaction rate depends on the concentration of two
of the reactants.

reaction: R1 + R2 -> P
reaction rate: k*R1*R2 mole/(liter*second)
species: R1 = 10 mole/liter
R2 = 8 mole/liter
P = 0 mole/liter
parameters: k = 1 liter/(mole*second)

Enter the reaction above into the software and simulating produces the
following results. There is a difference in the final values because the initial
amount of one of the reactants is lower than the other. After the first reactant
is used up, the reaction stops.
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Second-Order Kinetics with Two Reactants

Reversible Mass Action

You can model reversible reactions with two separate reactions or with one
reaction. With a single reversible reaction, the reaction rates for the forward
and reverse reactions are combined into one expression. Notice the angle
brackets before and after the hyphen to represent a reversible reaction.

reaction: R <-> P
reaction rate: kf*R - kr*P mole/(liter*second)
species: R = 10 mole/liter
P= 0 mole/liter
parameters: kf 1 1/second
kr = 0.2 1/second

Entering the reaction above into the software and simulating produces the
following results. At equilibrium when the rate of the forward reaction equals
the reverse reaction, v = kf*R - kr*P = 0and P/R = kf/kr.
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Defining Reaction Rates with Enzyme Kinetics

Simple Model for Single Substrate Catalyzed
Reactions

A simple model for enzyme-catalyzed reactions starts a substrate S reversibly
binding with an enzyme E. Some of the substrate in the substrate/enzyme
complex is converted to product P with the release of the enzyme.

kil
S+E e=—=ES K mip
Tr

vl = ki1[S][E], vir=kir[ES], v2=k2[ES]

This simple model can be defined with

¢ Differential rate equations. See “Enzyme Reactions with Differential Rate
Equations” on page A-8.

® Reactions with mass action kinetics. See “Enzyme Reactions with Mass
Action Kinetics” on page A-10.

® Reactions with Henri-Michaelis-Menten kinetics. See “Enzyme Reactions
with Irreversible Henri-Michaelis-Menten Kinetics” on page A-11.

Enzyme Reactions with Differential Rate Equations

The reactions for a single-substrate enzyme reaction mechanism (see “Simple
Model for Single Substrate Catalyzed Reactions” on page A-8) can be described
with differential rate equations. You can enter the differential rate equations
into the software as rate rules.

reactions: none
reaction rate: none
rate rules: dS/dt

kK1r*ES - k1*S*E

dE/dt = k1r*ES + K2*ES - k1*S*E
dES/dt = k1*S*E - K1r*ES - k2*ES
dP/dt = k2*ES
species: S = 8 mole
E= 4 mole
ES = 0 mole
P= 0 mole

A-8
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parameters: ki
kir
k2

2 1/ (mole*second)
1 1/second
1.5 1/second

Remember that the rate rule dS/dt = f(x) is written in a SimBiology rate
rule expression as S = f(x). For more information about rate rules see “Rate
Rules” on page 1-24.
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Alternatively, you could remove the rate rule for ES, add a new species Etotal
for the total amount of enzyme, and add an algebraic rule 0 = Etotal - E -
ES, where the initial amounts for Etotal and E are equal.

reactions: none
reaction rate: none
rate rules: dS/dt K1ir*eES - k1*S*E
dE/dt k1ir*ES + k2*ES - k1*S*E
dP/dt = k2*ES
algebraic rule: 0 Etotal - E - ES

species: S = 8 mole
E= 4 mole
ES = 0 mole

A-9



A Creating Reaction Rates

A-10

P= 0 mole
Etotal = 4 mole
parameters: k1 = 2 1/ (mole*second)
kir = 1 1/second
k2 = 1.5 1/second

Enzyme Reactions with Mass Action Kinetics

Determining the differential rate equations for the reactions in a model

1s a time-consuming process. A better way is to enter the reactions for a
single substrate enzyme reaction mechanism directly into the software. The
following example using models an enzyme catalyzed reaction with mass
action kinetics. For a description of the reaction model, see “Simple Model for
Single Substrate Catalyzed Reactions” on page A-8.

reaction:
reaction rate:

reaction:
reaction rate:

reaction:

reaction rate:
species:

parameters:

S+ E -> ES
k1*S*E (binding)

ES -> S + E
k1r*ES (unbinding)

ES ->E + P

k2*ES (transformation)
S= 8 mole

E= 4 mole
ES = 0 mole

P= 0 mole

ki =2 1/ (mole*second)

kir = 1 1/second
k2 1.5 1/second

The results for a simulation using reactions are identical to the results from
using differential rate equations.
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Enzyme Reactions with Irreversible
Henri-Michaelis-Menten Kinetics

Representing an enzyme-catalyzed reaction with mass action kinetics
requires you to know the rate constants k1, kir, and k2. However, these rate
constants are rarely reported in the literature. It is more common to give

the rate constants for Henri-Michaelis-Menten kinetics with the maximum
velocity Vm=k2*E and the constant Km = (kir + k2)/k1. The reaction rate for
a single substrate enzyme reaction using Henri-Michaelis-Menten kinetics is
given below. For information about the model, see “Simple Model for Single
Substrate Catalyzed Reactions” on page A-8.

_ Vmax[S]

Km + [S]

The following example models an enzyme catalyzed reaction using
Henri-Michaelis-Menten kinetics with a single reaction and reaction rate
equation. Enter the reaction defined below into the software and simulate.

reaction: S -> P
reaction rate: Vmax*S/(Km + S)
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The results show a plot slightly different from the plot using mass action
kinetics. The differences are due to assumptions made when deriving the

parameters: Vmax

species: S = 8 mole
P= 0 mole

= 6 mole/second
Km = 1.25 mole

Michaelis-Menten rate equation.
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Creating Rate Rules

¢ “Using Rate Rules When the Rate of Change Is Constant” on page B-2
¢ “Using Rate Rules When the Rate of Change Is Exponential” on page B-4

¢ “Using Rate Rules When the Rate of Change Is Determined by Another
Species ” on page B-6

¢ “Using Rate Rules To Express Differential Rate Equations as Rules” on
page B-8
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Using Rate Rules When the Rate of Change Is Constant

You can increase or decrease the amount or concentration of a species by a
constant value using a zero-order rate rule. For example, suppose species ¢
increases by a constant rate k.

reaction: none
rate equation: none
rate rule: dc/dt = k
species : ¢ = 10 mole(initial amount)
parameters: k 1 mole/second

The analytical solution is ¢ = kt + ¢_, where ¢, is the initial amount or
concentration of the species c.

Enter the rule described above as ¢ = k. Set the RuleType property to rate,
enter the values for ¢ and k, and then simulate.
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Using Rate Rules When the Rate of Change Is Constant

Alternatively, you could model a constant increase in a species using Mass
Action reaction null -> C.
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Using Rate Rules When the Rate of Change Is Exponential

You can change the amount of a species similar to a first-order reaction using a
first-order rate rule. For example, suppose the species ¢ decays exponentially.

The solution for the rate rule dc/dt = -k*cis ¢c= (:c,e'kt .

Enter the rate rule described above and the simulate.
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Notice that if the amount of a species ¢ is determined by a rate rule and c
1s also in a reaction, ¢ must have its BoundaryCondition property set to
true. For example, with a reaction a -> ¢ and a rate rule dc/dt = k*c,
set the BoundaryCondtion property for ¢ so that a differential rate term is
not created from the reaction. The amount of ¢ 1s determined solely by a
differential rate term from the rate rule.



Using Rate Rules When the Rate of Change Is Exponential

If the BoundaryCondtion property is set to false, you will get the following
error message:

Invalid rule variable 'in a reaction or another rule'.



B Creating Rate Rules

Using Rate Rules When the Rate of Change Is Determined
by Another Species

A species from one reaction can determine the rate of another reaction if it
is in the second reaction rate equation. Similarly, a species from a reaction

can determine the rate of another species if it is in the rate rule that defines
that other species.

reaction: a -> b
rate equation: v = -kil*a
rate rule: dc/dt = k2*a
species: a = 10 mole
mole
c = 5 mole
parameters: k1 = 1 1/second
k2 = 1 1/second

(e
1]
o

The solution for the species in the reaction are:
a:aoe'klt and b:ao(l-e'klt)

With the rate rule dc/dt = k,*a dependent on the reaction, dc/dt =
k,(a,e '), and the solution is:

C =c, + kpa,/k,(1 - ek?)

Enter the reaction and rule described above and simulate.
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Using Rate Rules To Express Differential Rate Equations as
Rules

Many mathematical models in the literature are described with differential
rate equations for the species. You could manually convert the equations to
reactions, or you could enter the equations as rate rules. For example, you

could enter the following differential rate equation for a species C:

— =vi-vdX

- kdC
dt Ke+C

as a rate rule in SimBiology:

C = vi - (vd*X*C)/(Kc + C) - kd*C

B-8



Models Used 1n Examples

e “Minimal Cascade Model for a Mitotic Oscillator” on page C-2
e “Model of the Yeast Heterotrimeric G Protein Cycle” on page C-19
® “Model of M-Phase Control in Xenopus Oocyte Extracts” on page C-25
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Minimal Cascade Model for a Mitotic Oscillator

Albert Goldbeter modified a model with enzyme cascades [Goldbeter and
Koshland 1981] to fit cell cycle data from studies with embryonic cells
[Goldbeter 1991]. He used this model to demonstrate thresholds with enzyme
cascades and periodic behavior caused by negative feedback.

There are two SimBiology model variations using Goldbeter’s model. The first
model uses the differential rate equations directly from Goldbeter’s paper. The
second model is built with reactions using Henri-Michaelis-Menten kinetics.

In this section...
“Goldbeter Model” on page C-2

“SimBiology Model with Rate Rules” on page C-5
“SimBiology Model with Reactions” on page C-7

“References” on page C-18

Goldbeter Model

® “About the Goldbeter Model” on page C-2
e “Reaction Descriptions and Model Assumptions” on page C-3

e “Mathematical Model” on page C-4

About the Goldbeter Model

Albert Goldbeter created a simple cell division model from studies with
embryonic cells [Goldbeter 1991]. This model demonstrates thresholds with
enzyme cascades and periodic behavior caused by negative feedback.

There are six species in Goldbeter’s minimal mitotic oscillator model
[Goldbeter 1991].

¢ C — Cyclin. The periodic behavior of cyclin activates and deactivates an
enzyme cascade.



Minimal Cascade Model for a Mitotic Oscillator

e M+, M — Inactive (phosphorylated) and active forms of cdc2 kinase.
Kinases catalyze the addition of phosphate groups onto amino acid residues.

e X+, X — Inactive and active (phosphorylated) forms of a cyclin protease.
Proteases degrade proteins by breaking peptide bonds.

The reactions are labeled r1 to r7 on the following diagram.
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This model shows:

® How thresholds with cdc2 kinase activation (M+ -> M) and protease
activation (X+ -> X) can occur as the result of covalent modification (for
example, phosphorylation or dephosphorylation), but without the need
for positive feedback.

® How periodic behavior with cdc2 kinase activation can occur with negative
feedback and the time delay associated with activation/deactivation
enzyme cascades.

Reaction Descriptions and Model Assumptions

The following list describes each of the reactions in Goldbeter’s minimal
mitotic oscillator with some of the simplifying assumptions. For a more
detailed explanation of the model, see [Goldbeter 1991].
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Cyclin (C) is synthesized at a constant rate (r1) and degraded at a constant
rate (r2).

Cyclin (C) does not complex with cdc2 kinase (M).

Cyclin (C) activates cdc2 kinase (M+ -> M) by increasing the velocity of
the phosphatase that activates the kinase. Inactive cdc2 kinase (M+) is
activated by removing inhibiting phosphate groups (r4).

The amount of deactivating kinase (not modeled) for the cdc2 kinase (M)
is constant. Active cdc2 kinase (M) is deactivated by adding inhibiting
phosphate group (r5).

The activation of cyclin protease (X+ -> X) by the active cdc2 kinase (M) is
direct without other intervening cascades. Cyclin protease (X) is activated
by adding phosphate groups (r6).

The amount of deactivating phosphatase (not modeled) for the cyclin
protease (X) is constant. Active cyclin protease (X) is deactivated by
removing the activating phosphate groups (r7).

The three species of interest are cyclin (C), active dephosphorylated cdc2
kinase (M), and active phosphorylated protease (X). The total amounts of (M
+ M+) and (X + X+) are constant.

Mathematical Model

Goldbeter’s minimal mitotic oscillator model is defined with three differential
rate equations and two algebraic equations that define changing parameters
in the rate equations.

Differential Rate Equation 1, Cyclin (C). The following differential rate
equation is from [Goldbeter 1991] for cyclin (C).

ac _
dt

U;

—UdXKC

—k,C
+c @

Differential Rate Equation 2, Kinase (M). The following differential rate
equation is for cdc2 kinase (M). Notice that (1 - M) is the amount of inactive
(phosphorylated) cdc2 kinase (M+).
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M, a-M) . M
dt 'K +0-M) 2Ky+M

VM,[C]

17K, +IC]
Differential Rate Equation 3, Protease (X). Differential rate equations

for cyclin protease (X). Notice that (1 - X) is the amount of inactive
(unphosphorylated) cyclin protease (X+).

dX a-x X
—=V3 -Vy
dt K;+(1-X) K,+X

SimBiology Model with Rate Rules

¢ “SimBiology Model with Rules” on page C-5
* “SimBiology Simulation with Rules” on page C-6

SimBiology Model with Rules

In the literature, many biological models are defined using differential
rate and algebraic equations. With SimBiology software, you can enter
the equations directly as SBML rules. The example in this section uses
Goldbeter’s mitotic oscillator to illustrate this point.

Writing differential rate equations in an unambiguous format that a software
program can understand is a fairly simple process.

e Use an asterisk to indicate multiplication. For example, k[a] is written
k*a.

* Remove square brackets that indicate concentration from around
species. The units associated with the species will indicate concentration
(moles/liter) or amount (moles, molecules).
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SimBiology software uses square brackets around species and parameter
name to allow names that are not valid MATLAB variable names.

For example, you could have a species named glucose-6-phosphate
dehydrogenase but you need to add brackets around the name in reaction
rate and rule equations.

e Use parentheses to clarify the order of evaluation for mathematical
operations. For example, do not write a Henri-Michaelis-Menten rate as
Vm*C/Kd + C, because Vm*C is divided by Kd before adding C, and then C is
added to the result.

The following equation is the rate rule for “Differential Rate Equation 1,
Cyclin (C)” on page C-4:

dC/dt = vi - (vd*X*C)/(Kd + C) - kd*C

The following equations are the rate and repeatedAssignment rules for
“Differential Rate Equation 2, Kinase (M)” on page C-4:

am/dt = (V1*Mplus)/ (K1 + Mplus) - (V2*M)/(K2 + M)
Vi = (VM1*C)/(Kc + C)
Mplus = Mt - M

The following equations are the rate and repeatedAssignment rules for
“Differential Rate Equation 3, Protease (X)” on page C-5:

dX/dt = (V3*Xplus)/ (K3 + Xplus) - (V4*X)/(K4 + X)
V3 = VM3*M
Xplus = Xt - X

Rules. The active (M) and inactive (Mplus) forms of the kinase are assumed
to be part of a conserved cycle with the total concentration (Mt) remaining
constant during the simulation. You need only one differential rate equation
with a mass balance equation to define the amounts of both species. Similarly,
the active (X) and inactive (Xplus) forms of the protease are part of a second
conserved cycle.

SimBiology Simulation with Rules

This is a simulation of Goldbeter’s minimal mitotic oscillator using differential
rate and algebraic equations. Simulate with the sundials solver and plot
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species C, M, and X. For a description of the model, see “SimBiology Model
with Rules” on page C-5.
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SimBiology Model with Reactions

® “Converting Differential Rate Equations to Reactions” on page C-7
e “Calculating Initial Values for Reactions” on page C-10

* “SimBiology Simulation with Reactions ” on page C-17

Converting Differential Rate Equations to Reactions

In the literature, many models are defined with differential rate equations.
With SimBiology software, creating the differential equations from reactions
1s unnecessary; you can enter the reactions and let the software calculate
the equations.

Some models are defined with differential rate equations, and you might need
the reactions to be compatible with your model. Two rules you can use to
convert differential rate equations to reactions are:
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* For a positive term — The species described by the equation is placed
on the right as a product, and the species in the term are placed on the
left as reactants.

* For a negative term — The species described by the equation is placed
on the left as a product, and the species in the term are also placed on
the left as reactants.

You need to determine the products using additional information,
for example, a reaction diagram, a description of the model, or an
understanding of a reaction. If a reaction is catalyzed by a kinase, then you
can conclude that the product has one or more additional phosphate groups.

A simple first-order reaction has differential rate equation dR/dt = +kr[P]
- kf[R]. The negative term implies that the reaction is R -> ? with an
unknown product. The positive term identifies the product and completes
the reaction, R <-> P.

Reactions R1 to R3 from Equation E1. The differential rate equation 1
is repeated here for comparison with the reactions. See “Differential Rate
Equation 1, Cyclin (C)” on page C-4.

dC C
—_— = Ui — UdX

dt K;+C
The reaction and reaction rate equations from the differential rate equation

E1 are given below:

—kyC

ri reaction: null -> C
reaction rate: vi

r2 reaction: C -> null
reaction rate: kd*C

r3 reaction: C -> null
reaction rate: (vd*X*C)/(Kd + C)

Reactions R4 and R5 from Equation E2. The differential rate equation 2
and algebraic equation 2 are repeated here for comparison with the reactions.
See “Differential Rate Equation 2, Kinase (M)” on page C-4.
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M, a-M) . M
dt 'K +0-M) 2Ky+M

VM,[C]

17K, +1C]
The reaction and reaction rate equations from the differential rate equation
E2 are given below:

ra reaction: Mplus -> M
reaction rate: V1*Mplus/(K1 + Mplus)
repeatedAssignment rule: V1 = VM1*C/(Kc + C)

r5 reaction: M -> Mplus
reaction rate: V2*M/(K2 + M)

Reactions R6 and R7 from Equation E3. The differential rate equation
for equation 3 and algebraic equation 3 is repeated here for comparison with
the reactions.

dX 1-X) X
— =V -Vy

At PKa+1-X) ‘K,+X
V3 = VM3*[M]

The reaction and reaction rate equations from the differential rate equation
E3 are given below:

reé reaction: Xplus -> X
reaction rate: V3*Xplus]/(K3 + Xplus)
repeatedAssignment rule: V3 = VM3*M

r7 reaction: X -> Xplus
reaction rate: V4*X/(K4 + X)

C-9
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Calculating Initial Values for Reactions

After you converted the differential rate equations to the reactions and
reaction rate equations, you can start to fill in initial values for the species
(reactants and products) and parameters.

The initial values for parameters and amounts for species are listed with four
different units in the same dimension:

¢ A — Original units in the Goldbeter 1991 paper.

¢ B — Units of concentration with time converted to second. When converting
atob,use 1 minute = 60 second for parameters.

X uM le-6 mole/liter 1 minute Y mole

X X =
minute 1 uM 60 second liter*second
® C — Units of amount as moles. When converting concentration to moles,

use a cell volume of 1e-12 liter and assume that volume does not change.

Y mole < le-12 liter _ Z mole
liter*second "~ second

® D — Units of amount as molecules. When converting amount as moles to
molecules, use 6.022e23 molecules = 1 mole.

Z mole _ 6.022e23 molecule _ N molecules

X =
second 1 mole second

With dimensional analysis on and unit conversion off, select all of the units for
one letter. For example, select all of the As. If dimensional analysis and unit
conversion are on, you can mix and match letters and get the same answer.

Reaction 1 Cyclin Synthesis.

R1 Value Units
reaction null -> C
reaction rate vi A. uM/minute

B. mole/(liter*second)
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parameters

species

vi

0.025
4.167e-10
4.167e-22
205

0.01

le-8
1.0e-20
6.022e+3

Units

. mole/second

. molecule/second

. uM/minute

. mole/(liter*second)
. mole/second

. molecule/second
uM

. mole/liter

. mole

Uaowmpogaompdo

. molecule

Reaction 2 Cyclin Undifferentiated Degradation.

R2

reaction

reaction rate

parameters

species

C -> null
kd*C

kd

Value

0.010
1.6667e-4
0.01

le-8
1.0e-20
6.022e+3

Units

A. uM/minute

. mole/(liter*second)
. mole/second

. molecule/second

. I/minute

C, D. 1/second

uM

. mole/liter

mole

oW wrEroYaw

. molecule
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Reaction 3 Cyclin Protease Degradation.

R3 Value
reaction C -> null

reaction rate  (vd*X*C)/(Kd + C)

Units

A. uM/minute

B. mole/(liter*second)
C. mole/second
D. molecule/second
parameter vd 0.25 A. 1/minute
0.0042 B, C, D. 1/second
parameter Kd 0.02 A. uM
2.0e-8 B. mole/liter
2.0e-020 C. mole
12044 D. molecule
species C (substrate) 0.01 A. uM
le-8 B. mole/liter
1.0e-20 C. mole
6.022e+3  D. molecule
species X (enzyme) 0.01 A. uM
le-8 B. mole/liter
1.0e-20 C. mole
6.022e+3  D. molecule
Reaction 4 Cdc2 Kinase Activation.
R4 Value Units
reaction Mplus -> M
reaction rate (V1*Mplus)/ (K1 + A. uM/minute
Mplus)

C-12
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R4

repeatedAssignmen¥1 = (VM1*C)/(Kc + C)

rule

parameter

parameter

parameter

parameter

species

species

V1 (variable by rule)

VM1

Kc

K1

Mplus (inactive substrate)

M (active product)

3.0

5.0e-8
5.0000e-020
30110
0.5
5.0000e-7
5.0e-19
3.011e+5
0.005
5e-9
5e-21
3.011e+3
0.99
9.9e-7
9.9e-19
5.962e+5
0.01

Units

B.
C.
D.

> g QoW pPp I QaEPFPELOQOE>ELO QW0 QW R

mole/(liter*second)
mole/second

molecule/second

. uM/minute

. mole/(liter*second)
. mole/second

. molecule/second

. uM/minute

. mole/(liter*second)
. mole/second

. molecule/second

uM

. mole/liter

mole

. molecule

uM

. mole/liter

mole

. molecule

uM

. mole/liter

mole

. molecule

. uM

C-13
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R4 Value Units
le-8 B. mole/liter
1.0e-20 C. mole
6.022e+3 D. molecule
species C 0.01 A. uM
le-8 B. mole/liter
1.0e-20 C. mole
6.022e+3 D. molecule
Reaction 5 Cdc2 Kinase Deactivation.
RS Value Units
reaction M -> M _plus
reaction rate (V2*M) /(K2 + M) A. uM/minute
B. (mole/liter-second)
C. mole/second
D. molecule/second
parameter V2 A. uM/minute
2.5000e-008 B. mole/liter-second
2.5000e-020 C. mole/second
D. molecule/second
parameter K2 A. uM
5.0000e-009 B. mole/liter
5.0000e-021 C. mole
D. molecule
1.0e-20 C. mole
species Mplus (inactive) A. uM
B. mole/liter
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R5 Value Units
9.9e-19 C. mole
5.962e+5 D. molecule

species M (active) A. uM

B. mole/liter
1.0e-20 C. mole
6.022e+3 D. molecule
Reaction 6 Protease Activation.
R6 Value Units
reaction Xplus -> X =
reaction rate (V3*Xplus)/ (K3 + Xplus) - A. uM/minute
B. mole/(liter*second)
° C. mole/second
= D. molecule/second
repeatedAssignmeN8 = VM3*M =
rule
parameter V3 (variable by rule) A. uM/minute
B. mole/liter-second
C. mole/second
D. molecule/second
parameter VM3 1.0 A. 1/minute
0.0167 B, C, D. 1/second
parameter K3 0.005 A. uM
5e-9 B. mole/liter
5e-21 C. mole
3.011et+3 D. molecule
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R6 Value Units
species Xplus (inactive substrate) 0.99 A. uM
9.9e-7 B. mole/liter
9.9e-19 C. mole
5.962e+5 D. molecule
species X (active product) 0.01 A. uM
le-8 B. mole/liter
1.0e-20 C. mole
6.022e+3 D. molecule
species M (enzyme) 0.01 A. uM
le-8 B. mole/liter
1.0e-20 C. mole
6.022e+3 D. molecule
Reaction 7 Protease Deactivation.
R7 Value Units
reaction X -> X _plus
reaction rate  (V4*X)/ (K4 + X) A. uM/minute
B. mole/(liter*second)
C. mole/second
D. molecule/second
parameter ! 0.5 A. uM/minute
8.3333e-009 B. mole/(liter*second)
8.3333e-021 C. mole/second
5.0183e+003 D. molecule/second
parameter K4 0.005 A. uM

5e-9 B. mole/liter
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R7 Value
5e-21
3011

species Xplus (inactive) 0.99
9.9e-7
9.9e-19
5.962e+5

species X (active) 0.01
le-8
1.0e-20
6.022e+3

Units

mole

. molecule
uM

. mole/liter
mole

. molecule
uM

. mole/liter

. mole

OaoawrPUawp» oo

. molecule

SimBiology Simulation with Reactions

This is a simulation of Goldbeter’s minimal mitotic oscillator with rate and
algebraic equations. Simulate with the sundials solver and plot species C, M,
and X. For a description of the model, see “SimBiology Model with Reactions”

on page C-7.

1

08¢

06

04

Amount (uM)

02

Time (minutes)
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Model of the Yeast Heterotrimeric G Protein Cycle

In this section...

“Background on G Protein Cycles” on page C-19
“Modeling a G Protein Cycle” on page C-20

“References” on page C-24

Background on G Protein Cycles

® “G Proteins” on page C-19

® “G Proteins and Pheromone Response” on page C-20

G Proteins

Cells rely on signal transduction systems to communicate with each other
and to regulate cellular processes. G proteins are GTP-binding proteins that
are involved in the regulation of many cellular processes. There are two
known classes of G proteins: the monomeric G proteins (one GTPase), and
the heterotrimeric G proteins (three different monomers). The G proteins
usually facilitate a step requiring energy. This energy is supplied by the
hydrolysis of GTP by a GTPase activating protein (GAP). The exchange of
GDP for GTP is catalyzed by a guanine nucleotide releasing protein (GNRP)
[Alberts et al. 1994].

GAP
Gprotein + GTP%—) Gprotein + GDP

G protein-coupled receptors (GPCRs) are the targets of many pharmaceutical
agents. Some estimates suggest that 40 to 50% of currently marketed drugs
target GPCRs and that 40% of current drug discovery focus is on GPCR
targets. Some examples include those for reducing stomach acid (ranitidine
which targets histamine H2 receptor), migraine (sumatriptan, which targets
a serotonin receptor subtype), schizophrenia (olanzapine, which targets
serotonin and dopamine receptors), allergies (desloratadine, which targets
histamine receptors). One approach in pharmaceutical research is to model

C-19



€ Models Used in Examples

C-20

signaling pathways to analyze and predict both downstream effects and
effects in related pathways. This tutorial examines model building and
analysis of the G protein cycle in the yeast pheromone response pathway
using the SimBiology desktop.

G Proteins and Pheromone Response

In the yeast Saccharomyces cerevisiae, G protein signaling in pheromone
response is a well characterized signal transduction pathway. The pheromone
secreted by alpha cells activates the G protein-coupled a-factor receptor
(Ste2p) in a cells which results in a variety of cell responses including cell-cycle
arrest and synthesis of new proteins. The authors of the study performed

a quantitative analysis of this cycle, compared the regulation of G protein
activation in wild-type yeast haploid a cells with cells containing mutations
that confer supersensitivity to a-factor. They analyzed the data in the context
of cell-cycle arrest and pheromone-induced transcriptional activation and
developed a mathematical model of the G protein cycle that they used to
estimate rates of activation and deactivation of active G protein in the cell.

Modeling a G Protein Cycle

e “Reactions Overview” on page C-20

e “Assumptions, Experimental Data, and Units in the G Protein Model” on
page C-22

Reactions Overview

Systems biologists represent biological pathways and processes as reactions
with reaction rates, and treat the components of these pathways as individual
species.

The G protein cycle in the yeast pheromone-response pathway can be
condensed into a set of biochemical reactions. These reactions are complex
formation, transformation, or disassociation reactions that Yi and colleagues
[Yi et al. 2003] use to simplify and describe the system. In this example,
a-factor, a-factor receptor, and the G protein subunits are all treated as
species participating in reactions. The system can be graphically represented
as follows.



Model of the Yeast Heterotrimeric G Protein Cycle

1
_ll?{x::eptur ligand irteraction

‘ 5
R | —— ORL degradation
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R synthesis/degradation () B A _V// Ghg 6
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Graphical Representation of the G protein cycle in yeast pheromone response. The numbers

represent reaction numbers referenced in the text. L= Ligand (alpha factor), R = alpha-factor receptor,
by = free levels of G-beta: G-gamma complex, Ga = active G-alpha-GTP, 5d = inactive G-alpha- GDP
5 = inactive Ghg: Gd camplex.

The following table shows you the reactions used to model the G protein cycle
and the corresponding rate constants (rate parameters) for each reaction. For
reversible reactions, the forward rate parameter is listed first.

No. Name Reaction Rate
Parameters
1 Receptor-ligand L+R<->RL kRL, kRLm
interaction
2 Heterotrimeric G protein Gd + Gbg -> G kG1
formation
3 G protein activation RL + G -> Ga + Gbg + RL kGa
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No. Name Reaction Rate
Parameters
4  Receptor synthesis and R <-> null kRdo, kRs
degradation
5  Receptor-ligand RL -> null kRD1
degradation
6 G protein inactivation Ga -> Gd kGd

Note that in reaction 3 (G protein activation), RL appears on both sides of the
reaction. This i1s because RL is treated as a modifier or catalyst, and the model
assumes that there is no synthesis or consumption of RL in this reaction.

The authors use a set of ordinary differential equations (ODESs) to describe
the system. In the software, you can represent the biological pathway as a
system of biochemical reactions and the software creates the ODEs for you.
Alternatively, if you have a set of ODEs that describe your system you can
enter these as rate rules. For an example of modeling using rate rules, see
“SimBiology Model with Rate Rules” on page C-5.

Assumptions, Experimental Data, and Units in the G Protein
Model

The authors have obtained experimental data either through their own
measurements or through published literature. As with any other model, the
G protein cycle model simplifies the biological process while also trying to
reconcile the experimental data. Consider these points:

¢ Reaction 2 — Binding and formation of the heterotrimeric G protein
complex is treated as a single-step reaction.

¢ Reaction 3 — Activation of G protein is modeled as a single-step. Guanine
nucleotide exchange factors (GEFs) are not modeled.

¢ Reactions 3 and 6 — The parameters for the rate of G protein activation
and deactivation (kGa and kGd) have been estimated based on the dose
response curves in the reference paper. The SimBiology model being built
in this tutorial directly uses those values.

® Reactions 4 and 5 — Receptor synthesis and degradation are handled
purely as two simple reaction steps.
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® Reaction 6 — Deactivation of G protein by the regulator of G protein
signaling (RGS) protein Sst2p is modeled as a single step. Sst2p is not
modeled.

The reaction is modeled with an estimated reaction rate of 0.11 s-') in
the Sst2p containing wild-type strain. The uncatalyzed reaction rate is
estimated to be 0.004 s°' in a strain with a deletion of SST2 (sst2A4,
mutant strain).

* Free GDP, GTP, and Pi are not included in the model.

This tutorial shows you how to plot the experimental data over the simulation
plot of the active G protein fraction. You can estimate the values of the
experimental data of interest for this example from the coordinates of the
plots found in Figure 5 of the reference paper [Yi et al. 2003]. The following
values were obtained by comparing the coordinates of the standards with
those of the unknowns in the figure.

Time Fraction of Active Ga (Experimental)
0 0.00
10 0.35
30 0.40
60 0.36
110 0.39
210 0.33
300 0.24
450 0.17
600 0.20
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Note The SimBiology Dimensional Analysis feature is not used in this
tutorial. For this tutorial, the values of all species are converted to have the
unit molecule, and all rate parameters are converted to have either the unit
1/second or the units 1/ (molecule*second), depending on whether the
reaction is first or second order. You should leave the InitialAmountUnits
box for species and the ValueUnits box for rate parameters empty for the
models in this tutorial.
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Model of M-Phase Control in Xenopus Oocyte Extracts

John Tyson’s Computational Cell Biology Lab created a mathematical model
for M-phase control in Xenopus oocyte (frog egg) extracts [Marlovits et al.
1998]. The M-phase control model shows principles by which you can apply
phosphorylation and regulatory loops in your own models. Publications
typically list systems of ordinary differential equations (ODEs) that represent
a model system. This example shows you how to interpret these ODEs in
the form of reaction pathways that are easier to represent and visualize in
SimBiology software.

The model is centered around M-phase promoting factor (MPF). There are
two positive feedback loops where MPF increases its synthesis and a negative
feedback loop where MPF decreases its amount by increasing its degradation.

In this section...
“M-Phase Control Model” on page C-25

“M-Phase Control Equations” on page C-27
“SimBiology Model with Rate and Algebraic Rules” on page C-36
“SimBiology Model with Reactions and Algebraic Rules” on page C-43

“References” on page C-60

M-Phase Control Model

® “Synthesis Reactions” on page C-25
e “Regulation Reactions with Active MPF” on page C-26

Synthesis Reactions

Cyclin B (CycB) dimerizes with Cdc2 kinase (Cdc2) to form M-phase
promoting factor (MPF).
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Regulation Reactions with Active MPF

Positive feedback loops with M-phase promoting factor (MPF) activate the
Cdc25 phosphatase and deactivate the Weel kinase. A negative feedback loop
with MPF activates anaphase-promoting complex (APC) that regulates the
degradation of the Cyclin B subunit.
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1
e e e e === = =

M-Phase Control Equations

e “About the Rate Equations in This Example” on page C-28

¢ “Converting Differential Equations to Reactions” on page C-28

¢ “Equation 1, Cyclin B” on page C-29

¢ “Equation 2, M-Phase Promoting Factor” on page C-30

¢ “Equation 3, Inhibited M-Phase Promoting Factor” on page C-31

¢ “Equation 4, Inhibited and Activated M-Phase Promoting Factor” on page

C-31
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e “Equation 5, Activated M-Phase Promoting Factor” on page C-32

e “Equation 11, Cell Division Control 25” on page C-33

e “Equation 12, Weel Activation/Deactivation” on page C-33

e “KEquation 13, Intermediate Enzyme Activation/Deactivation” on page C-34
e “Equation 14, APC Activation/Deactivation” on page C-34

e “Equation 17, Rate Parameter K2” on page C-35

e “Equation 18, Rate Parameter Kcdc25” on page C-36

e “Equation 19, Rate Parameter Kweel” on page C-36

About the Rate Equations in This Example

Models in systems biology are commonly described in the literature with
differential rate equations. However, SimBiology software defines a model
using reactions. This section shows you how to convert models published

in the literature to a SimBiology format. The equation numbers match the
published paper for this model [Marlovits et al. 1998]. Equations that are
missing in the sequence involve the Cdk inhibitor (CKI) protein, which is not
currently modeled in the SimBiology version.

Converting Differential Equations to Reactions

The rules for writing reaction and reaction rate equations from differential
rate equations include not only the equations but also an understanding of
the reactions. dx/dt refers to the species the differential rate equation is
defining. kinetics refers to the species in the reaction rate.

® Positive terms: Rate species are placed on right side of the reactions;
reaction rate equation species are placed on the left.

kinetics — %
dt

® Negative terms: Rate species are placed on the left side of the reaction
because the species are being used up in some way; reaction rate equation
species are also placed on left. You need to deduce the products from
additional information about the model.
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kinetics or (((11—);) — products?

The following table will help you deduce the products for a reaction. In this

example, by convention, phosphate groups on the right side of a species name

are activating while phosphate groups on left are inhibiting.

Enzyme Description Reaction

wee1 Kinase, add inhibiting phosphate | MPF —> P-MPF
group

cdc25 Phosphatase, remove inhibiting | P-MPF —> MPF + P
phosphate group

kcak Kinase, add activating MPF —> MPFp
phosphate group

kpp Phosphatase, remove activating | MPF-P —> MPF + P
phosphate group

MPF Kinase, add activating or Weel/Cdc25/1E —> X-P or
inhibiting phosphate group P-X

ki Add inhibiting Cki Cki + MPF —> Cki:MPF

kir Remove inhibiting Cki Cki:MPF —> Cki + MPF

Equation 1, Cyclin B
Differential rate equation for cyclin B [Marlovits et al. 1998].

d[CycB]

dt

=+k1 -k2[CycB] -k3[Cdc2][CycB]

Rate rule using SimBiology format for the differential rate equation 1. For
a model using this rule, see “SimBiology Model with Rate and Algebraic
Rules” on page C-36.

Rule 1

[CycB] = k1 - K2*[CycB] - k3*[Cdc2]*[CycB]

Reaction and reaction rate equations derived from the differential rate
equation. For a model using these reactions, see “SimBiology Model with
Reactions and Algebraic Rules” on page C-43.
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Reaction 1 AA -> CycB v = ki
Reaction 2 CycB -> AA K2*[CycB]
Reaction 3 Cdc2 + CycB -> MPF v = k3*[Cdc2]*[CycB]

<
I

Equation 2, M-Phase Promoting Factor

Differential rate equation for M-phase promoting factor (MPF) [Marlovits
1998]. Note that the parameter name kcakr [Marlovits et al. 1998] is
changed to kpp [Borisuk 1998] in the following reaction equations. MPF is a
heterodimer of cde2 kinase and cyclin B.

@ _ +k3[Cdc2][CycB] -K2[MPF]
+kpp[MPFp] -kcak[MPF]
+Kede25[pMPF] -Kweel[MPF]

+kir[Cki:MPF] -ki[MPF][Cki]

Rate rule using SimBiology format for the differential rate equation 1. For
a model using this rule, see “SimBiology Model with Rate and Algebraic
Rules” on page C-36.

Rule 2 MPF = kpp*MPFp - (Kweel + kcak + K2)*MPF +
Kcdc25*pMPF + k3*Cdc2*CycB

Reaction and reaction rate equations derived from the differential rate
equation. For a model using these reactions, see “SimBiology Model with
Reactions and Algebraic Rules” on page C-43. A reaction name in parentheses
denotes a reaction repeated in another differential rate equation.

(Reaction 3) Cdc2 + CycB -> MPF v = k3*[Cdc2]*[CycB]
Reaction 4 MPF -> Cdc2 + AA v = K2*[MPF]
Reaction 5 MPFp -> MPF v = Kpp*[MPFp]
Reaction 6 MPF -> MPFp v = kcak*[MPF]
Reaction 7 pMPF -> MPF v = Kcdc25* [ pMPF]
Reaction 8 MPF -> pMPF v = Kweel*[MPF]
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Equation 3, Inhibited M-Phase Promoting Factor

Differential rate equation for inhibited M-phase promoting factor (pMPF)
[Marlovits 1998].

% — _K2[pMPF]

+kpp[pMPFp] -kcak[pMPF]
+RKweel[MPF] -Kedc25[pMPF]
+kd[Cki:pMPF]

Rate rule using SimBiology format for the differential rate equation 3. For
a model using this rule, see “SimBiology Model with Rate and Algebraic
Rules” on page C-36.

Rule 3 pMPF = Kweel1*MPF - (Kcdc25 + kcak +
K2) *pMPF + kpp*pMPFp

Reaction and reaction rate equations derived from the differential rate
equation. For a model using these reactions, see “SimBiology Model with
Reactions and Algebraic Rules” on page C-43.

Reaction 11 pMPF -> Cdc2 + AA
Reaction 12 pMPFp -> pMPF
Reaction 13 PpMPF -> pMPFp
(Reaction 8) MPF -> pMPF
(Reaction 7) pMPF -> MPF

= K2*[pMPF]

= kpp*[pMPFp]
kcak* [ pMPF]

= Kweel* [MPF]

= Kcdc25* [ pMPF]

< < < < <
I}

Equation 4, Inhibited and Activated M-Phase Promoting Factor

Differential rate equation for inhibited and activated M-phase promoting
factor (pMPFp) [Marlovits 1998].

d[pMPFp]

=-K2[pMPF
7 [p pl

+kcak[pMPF] -kpp[pMPFp]
+Kweel[MPFp] -Kcde25[pMPFp]
+kd[Cki:pMPFp]

C-31



€ Models Used in Examples

Rate rule using SimBiology format for the differential rate equation. For a
model using this rule, see “SimBiology Model with Rate and Algebraic Rules”
on page C-36.

Rule 4 pMPFp = Kweel*MPFp - (kpp + Kcdc25 + K2)*pMPFp
+ kcak*pMPF

Reaction and reaction rate equations derived from the differential rate
equation. For a model using these reactions, see “SimBiology Model with
Reactions and Algebraic Rules” on page C-43.

Reaction 15 pMPFp -> Cdc2 + AA
(Reaction 13) pMPF -> pMPFp
(Reaction 12) pMPFp -> pMPF
Reaction 16 MPFp -> pMPFp
Reaction 17 pMPFp -> MPFp

= K2*[pMPFp]

= kcak*[pMPF]
kpp* [PMPFp]

= Kweel*[MPFp]

= Kcdc25* [ pMPFp]

< < < < <
1}

Equation 5, Activated M-Phase Promoting Factor

Differential rate equation for activated M-phase promoting factor (MPFp)
[Marlovits 1998].

d[MPFp]

= -K2[MPF
7 [ pl

+kcak[MPF] -kpp[MPFp]
+Kedc25[pMPFp] -Kweel MPFp]
+kir[CKI:MPFp] -ki[CKI][MPFp]

Rate rule using SimBiology format for the differential rate equation 1. For
a model using this rule, see “SimBiology Model with Rate and Algebraic
Rules” on page C-36.

Rule 5 MPFp = kcak*MPF - (kpp + Kweel + K2)*MPFp
+ Kcdc25*pMPFp

Reaction and reaction rate equations derived from the differential rate
equation. For a model using these reactions, see “SimBiology Model with
Reactions and Algebraic Rules” on page C-43.
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Reaction 19 MPFp -> MPF + AA v = K2*[MPFp]
(Reaction 6) MPF -> MPFp = kcak*[MPF]
Reaction 5) MPFp -> MPF = kpp*[MPFp]

= Kcdc25* [ pMPFp]
Kweel* [MPFp]

< < < <

(
(Reaction 17) pMPFp -> MPFp
(Reaction 16) MPFp -> pMPFp

Equation 11, Cell Division Control 25

Differential rate equation for activating and deactivating Cdc25 [Marlovits
1998].

dlCde25p] _  k25[MPFpl(Cdc25] _ k26r(Cdc25p]

dt Km25+[Cdc25] Km25r+[Cdc25p]

Rate rule in SimBiology format for the differential rate equation 1. For a
model using this rule, see “SimBiology Model with Rate and Algebraic Rules”
on page C-36. Note that since there isn’t a rate rule for Cdc25, its amount is
written as (TotalCdc25 - Cdc25p).

Rule 11 Cdc25p = (k25*MPFp*(TotalCdc25 - Cdc25p))/(Km25 +
(TotalCdc25 - Cdc25p)) - (k25r*PPase*Cdc25p)/(Km25r + Cdc25p)

Reaction and reaction rate equations derived from the differential rate
equation. For a model using these reactions, see “SimBiology Model with
Reactions and Algebraic Rules” on page C-43.

Reaction 36 Cdc25 -> Cdc25p, v
Reaction 37 Cdc25p -> Cdc25, v

k25* [MPFp]*[Cdc25]/ (Km25 + [Cdc25])
k25r*[Cdc25p]/ (Km25r + [Cdc25p])

Equation 12, Weel Activation/Deactivation

Differential rate equation for activating and deactivating Weel kinase
[Marlovits 1998]. The kinase (MPFp) phosphorylates active Weel (Weel) to
its inactive form (Weelp). The dephosphorylation of inactive Weel (Weelp) is
by an unknown phosphatase.

d[Weel] _ kwlMPFp][Weel] N kwr{WeelP]

dt Kmuw +[Weel] Kmuwr +[WeelP]

C-33



€ Models Used in Examples

Rate rule in SimBiology format for the differential rate equation 1. For a
model using this rule, see “SimBiology Model with Rate and Algebraic Rules’
on page C-36.

i

Rule 12 Weelp = (kw*MPFp*(TotalWeel - Weelp))/(Kmw + (TotalWeel - Weelp))
- (kwr*Weelp)/ (Kmwr + Weelp)

Reaction and reaction rate equations derived from the differential rate
equation. For a model using these reactions, see “SimBiology Model with
Reactions and Algebraic Rules” on page C-43.

reaction 38 Weel -> Weelp, v (kw*[MPFp]*[Weel1])/(Kmw + [Weel])
reaction 39 Weelp -> Weel, v = (kwr*[Weelp])/(Kmwr + [Weelp])

Equation 13, Intermediate Enzyme Activation/Deactivation

Differential rate equation for activating and deactivating the intermediate
enzyme (IE) [Marlovits 1998]. The active kinase (MPFp) phosphorylates the
inactive intermediate enzyme (IE) to its active form (IEp).

dt Kmie +[IE] Kmier +[IEp]

d[IEp] N kiel MPFp][IE] kier[IEp]

Rate rule in SimBiology format for the differential rate equation 1. For a
model using this rule, see “SimBiology Model with Rate and Algebraic Rules’
on page C-36.

’

Rule 13 IEp = (kie*MPFp*(TotallE - IEp))/(Kmie + (TotallE - IEp))
- (kier*IEp)/(Kmier + IEp)

Reaction and reaction rate equations derived from the differential rate
equation. For a model using these reactions, see “SimBiology Model with
Reactions and Algebraic Rules” on page C-43.

reaction 40 IE -> IEp, v = (kie*[MPFp]*[IE])/(Kmie + [IE])
reaction 41 IEp -> IE, v = (kier*[IEp])/(Kmier + [IEp])

Equation 14, APC Activation/Deactivation
Differential rate equation for [Marlovits 1998].
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d[APCa] _ _ kaplIEPI[APCi] __kapr{APCal

dt Kmap+[APCil Kmapr+[APCal

Rate rule in SimBiology format for the differential rate equation 1. For a
model using this rule, see “SimBiology Model with Rate and Algebraic Rules”
on page C-36.

Rule 14 APCa = (kap*IEp*(TotalAPC - APCa))/(Kmap + (TotalAPC - APCa))
- (kapr*APCa)/(Kmapr + APCa)

Reaction and reaction rate equations derived from the differential rate
equation. For a model using these reactions, see “SimBiology Model with
Reactions and Algebraic Rules” on page C-43.

Reaction 42 APCi -> APCa, v = (kap*[IEp]*[APCi])/(Kmap + [APCi])
Reaction 43 APCa -> APCi, v = (kapr*[APCa])/(Kmapr + [APCa])

Equation 17, Rate Parameter K2

Algebraic equation to define the rate parameter K2 [Marlovits 1998]. Inactive
APC (APCi) is catalyzed by IE (intermediate enzyme) to active APC (APCa).

k2 = V2’[APC] + V2”[APC’]
Algebraic rule in SimBiology format for the algebraic equation 17. For a

model using this rule, see “SimBiology Model with Rate and Algebraic Rules”
on page C-36.

Algebraic Rule 17 V2i*(TotalAPC - APCa) + V2a*APCa - K2

Algebraic rule when simulating with reactions. For a model using this rule
with reactions, see “SimBiology Model with Reactions and Algebraic Rules”
on page C-43. V2' is renamed to V2i and V2 is renamed to V2a. APCi (APC)
is the inactive form of the enzyme while APCa (APC’) is the active form. K2
is the independent variable.

Algebraic Rule 1 (V2i*APCi) + (V2a*APCa) - K2
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C-36

Equation 18, Rate Parameter Kcdc25

Algebraic equation to define the rate parameter Kcdc25 [Marlovits 1998].
Inactive Cdc25 (Cdc25) is phosphorylated by MPF to active Cdc25 (Cdc25p).

kedce25 = V25'[Cde25] + V257 [Cde25p]

Algebraic rule in SimBiology format for the algebraic equation 18. For a
model using this rule, see “SimBiology Model with Rate and Algebraic Rules”
on page C-36.

Algebraic Rule 18 V25i*(TotalCdc25 - Cdc25p) + V25a*Cdc25p - Kcdc25

Algebraic rule when simulating with reactions. Kcdc25 is the independent
variable. For a model using this rule with reactions, see “SimBiology Model
with Reactions and Algebraic Rules” on page C-43.

Algebraic Rule 2 (V25i*Cdc25) + (V25a*Cdc25p) - Kcdc2s

Equation 19, Rate Parameter Kweel

Algebraic equation to define the rate parameter [Marlovits 1998]. Active
Weel (Wee1) is phosphorylated by MPF to inactive Weel (Weelp).

kweel = Vweel’[Weelp] + Vweel”[Weel]

Algebraic rule in SimBiology format for rate parameter equation 19. For a
model using this rule, see “SimBiology Model with Rate and Algebraic Rules”
on page C-36.

Algebraic Rule 19 Vweeli*Weelp + Vweela*(TotalWeel - Weelp) - Kweei
Algebraic rule when simulating with reactions. Kwee1 is the independent

variable. For a model using this rule with reactions, see “SimBiology Model
with Reactions and Algebraic Rules” on page C-43.

Algebraic Rule 3 (Vweeli*Weelp) + (Vweela*Weel) - Kweef

SimBiology Model with Rate and Algebraic Rules

® “Overview” on page C-37
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e “Writing Differential Rate Equations as Rate Rules” on page C-37

® “Species” on page C-38

* “Parameters” on page C-39

e “Rate Rule 1, Cyclin B (CycB)” on page C-40

e “Rate Rule 2, M-Phase Promoting Factor (MPF)” on page C-41

e “Rate Rule 3, Inhibited M-Phase Promoting Factor (pMPF)” on page C-41

e “Rate Rule 4, Activated but Inhibited M-Phase Promoting Factor (pbMPFp)”
on page C-42

e “Rate Rule 5, Activated M-Phase Promoting Factor (MPFp)” on page C-42
e “Rate Rule 11, Activated Cdc25 (Cdc25p)” on page C-42

e “Rate Rule 12, Inhibited Weel (Weelp)” on page C-42

e “Rate Rule 13, Activated Intermediate Enzyme (IEp)” on page C-42

e “Rate Rule 14, Activated APC (APCa)” on page C-42

e “Algebraic Rule 17, Rate Parameter K2” on page C-43

e “Algebraic Rule 18, Rate Parameter Kcdc25” on page C-43

® “Algebraic Rule 19, Rate Parameter Kweel” on page C-43

Overview

There is one rate rule for each equation defining a species and one algebraic
rule for each variable parameter in the M-phase control model [Marlovits
1998]. For a list and description of the equations, see “M-Phase Control
Equations” on page C-27.

A basic model includes rate rules 1 to 5 and 11 to 14 with algebraic rules 17,
18, and 19.

Writing Differential Rate Equations as Rate Rules

Writing differential rate equations in an unambiguous format that a software
program can understand is a simple process when you follow the syntax rules
for programming languages.
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Use an asterisk to indicate multiplication. For example, k[A] is written k*A
or k*[A]. The brackets around the species A do not indicate concentration.

SimBiology uses square brackets around species and parameter name to
allow names that are not valid MATLAB variable names. For example, you
could have a species named glucose-6-phosphate dehydrogenase but you
need to add brackets around the name in reaction rate and rule equations.

[glucose-6-phosphate dehydrogenase]

Use parentheses to clarify the order of evaluation for mathematical
operations. For example, do not write Henri-Michaelis-Menten reaction
rates as Vm*C/Kd + C, because Vm*C is divided by Kd before adding C to the
result. Instead, write this reaction rate as (Vm*C)/(Kd + C).

Species

The following table lists species in the model with their initial amounts.
There are three variable parameters modeled as species (K2, Kcdc25, and
KWee1). You could also model the variable parameters as parameters with the
property ConstantAmount cleared.
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Marne Initial&mount £ [Initial&mountlnits | ConstantAmaount
Cych 0.0 =1 r
MPF 0.0 =1 r
phPF 0.0 =1 -
nhPFp 0.0 =1 I
MPFp 0.0 =1 r
Cdc25p 0.0 =1 r
Weelp 0.0 =1 r
IEp 0.0 =1 r
APCa 0.0 =1 r
Kede2s 0.0 =1 r
KineeT 0.0 =1 I
K2 0.0 =1 -
Yyeel 0.0 =1 I
TatalCdc25 1.0 =1 W
TotalvWee1 1.0 =1 73
TatalAPC 1.0 =1 73
TatallE 1.0 =1 r
PPase 1.0 =] 72
AntisPC 1.0 =1 73
Cdc2 100.0 =1 7
Parameters

The following table lists parameters in the model with their initial values.

The property ConstantValue is selected for all of the parameters.
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C-40

Marne Yalue © Yaluellnits Constantsalue
Yieea 1.0 =l W
ki 1.0 =1 7
Krrwr 1.0 -1 W
Kmapr 1.0 =1 3
Krn26r 1.0 =1 W
kcak 0.64 =1 73
W2a 0.25 =1 W
W25 3 0.17 =1 7
kiet 0.15 =l 73
kapr 0.13 =1 73
kap 0.13 =l 73
kst 0.1 =l 73
k25¢ 0.1 =1 7
Krrwy 0.1 =l 73
Kmz25 0.1 =1 W
kie 0.02 -1 W
ke 0.02 =1 W
k25 0.02 =1 W
W2E] 0.017 =1 7
Wwee 0.01 =1 W
Krnier 0.01 =1 73
Krnie 0.01 =l 73
Krmap 0.01 =1 73
W2 0.0050 =1 7
k3 0.0050 =l 73
kpp 0.0040 | 7

Rate Rule 1, Cyclin B (CycB)

The rate rule is from “Equation 1, Cyclin B” on page C-29.

rate rule: CycB = k1 - K2*CycB -

k3*Cdc2*CycB
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species: CycB = 0 nM
Cdc2 = 100 nM, [x]constant
parameters: k1 = 1 nM/minute
K2 = 0 1/minute, []constant
k3 = 0.005 1/ (nM*minute)

K2 is a variable rate parameter whose value is defined by an algebraic rule.
See “Algebraic Rule 17, Rate Parameter K2” on page C-43. Its value varies
from 0.005 to 0.25 1/minute.

Rate Rule 2, M-Phase Promoting Factor (MPF)
The rate rule is from “Equation 2, M-Phase Promoting Factor” on page C-30.

rate rule: MPF = kpp*MPFp - (Kweel + kcak + K2)*MPF + Kcdc25*pMPF
+ k3*Cdc2*CycB
species: MPF = 0 nM

MPFp = 0 nM
PMPF = 0 nM

parameters: kpp = 0.004 1/minute
kcak = 0.64 1/minute
k3 = 0.005 1/(nM*minute)
K2 = 0 1/minute
Kcdec25 = 0 1/minute
Kweel = 0 1/minute

K2, Kcdc25, and Kwee1 are variable rate parameters whose values are defined
by algebraic rules. See “Algebraic Rule 17, Rate Parameter K2” on page C-43,
“Algebraic Rule 18, Rate Parameter Kcdc25” on page C-43, and “Algebraic
Rule 19, Rate Parameter Kweel” on page C-43.

Rate Rule 3, Inhibited M-Phase Promoting Factor (pMPF)

The rate rule is from “Equation 3, Inhibited M-Phase Promoting Factor” on
page C-31.

rate rule: pMPF = Kweel*MPF - (Kcdc25 + kcak + K2)*pMPF + kpp*pMPFp
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Rate Rule 4, Activated but Inhibited M-Phase Promoting Factor
(PMPFp)

The rate rule is from “Equation 4, Inhibited and Activated M-Phase Promoting
Factor” on page C-31.

rate rule: pMPFp = Kweel*MPFp - (kpp + Kcdc25 + K2)*pMPFp + kcak*pMPF

Rate Rule 5, Activated M-Phase Promoting Factor (MPFp)

The rate rule is from “Equation 5, Activated M-Phase Promoting Factor”
on page C-32.

rate rule: MPFp = kcak*MPF - (kpp + Kweel + K2)*MPFp + Kcdc25*pMPFp

Rate Rule 11, Activated Cdc25 (Cdc25p)
The rate rule is from “Equation 11, Cell Division Control 25” on page C-33.

rate rule: Cdc25p = (k25*MPFp*(TotalCdc25 - Cdc25p))/(Km25 + (TotalCdc25 - Cdc25p))
- (k25r*PPase*Cdc25p)/ (Km25r + Cdc25p)

Rate Rule 12, Inhibited Weel (Weelp)

The rate rule is from “Equation 12, Weel Activation/Deactivation” on page
C-33.

rate rule: Weelp = (kw*MPFp*(TotalWeel - Weelp))/(Kmw + (TotalWeel - Weelp))
- (kwr*PPase*Wee1p)/(Kmwr + Weeip)

Rate Rule 13, Activated Intermediate Enzyme (IEp)

The rate rule is from “Equation 13, Intermediate Enzyme
Activation/Deactivation” on page C-34.

rate rule: IEp = (kie*MPFp*(TotallE - IEp))/(Kmie + (TotalIE - IEp))
- (kier*PPase*IEp)/(Kmier + IEp)

Rate Rule 14, Activated APC (APCa)

The rate rule is from “Equation 14, APC Activation/Deactivation” on page
C-34.
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rate rule: APCa = (kap*IEp*(TotalAPC - APCa))/(Kmap + (TotalAPC - APCa))
- (kapr*AntiAPC*APCa)/ (Kmapr + APCa)

Algebraic Rule 17, Rate Parameter K2

K2 is a variable rate parameter whose value is determined by the amount
of active and inactive APC. The algebraic rule is from “Equation 17, Rate
Parameter K2” on page C-35.

algebraic rule: V2i*(TotalAPC - APCa) + V2a*APCa - K2
species: APCi = 1 nM

APCa = 0 nM

TotalAPC = 1 nM [x]constant
parameters: K2 = 0 or 0.25 1/minute, []constant

V2i = 0.005 1/(nM*minute)

V2a

0.25 1/(nM*minute)

Algebraic Rule 18, Rate Parameter Kcdc25

Kcdc25 is a variable rate parameter whose value is determined by the amount
of active and inactive Cdc25. The algebraic rule is from “Algebraic Rule 18,
Rate Parameter Kcdc25” on page C-43.

algebraic rule: V25i*(TotalCdc25 - Cdc25p) + V25a*Cdc25p - Kcdc25

Algebraic Rule 19, Rate Parameter Kweel

Kwee1 is a variable rate parameter whose value is determined by the amount
of active and inactive Wee1. The algebraic rule is from “Equation 19, Rate
Parameter Kweel” on page C-36.

algebraic rule: Vweei*Weelp + Vweea*(TotalWeel - Weelp) - Kweel

SimBiology Model with Reactions and Algebraic
Rules

® “Overview” on page C-45
® “Reaction 1, Synthesis of Cyclin B ” on page C-45
e “Reaction 2, Degradation of Cyclin B ” on page C-46
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“Reaction 3, Dimerization of Cyclin B with Cdc2 Kinase” on page C-47
“Reaction 4, Degradation of Cyclin B on MPF” on page C-47
“Reaction 5, Deactivation of Active MPF” on page C-48

“Reaction 6, Activation of MPF” on page C-49

“Reaction 7, Remove Inhibiting Phosphate from Inhibited MPF” on page
C-50

“Reaction 8, Inhibition of MPF by Phosphorylation” on page C-51
“Reaction 11, Degradation of Cyclin B on Inhibited MPF” on page C-53
“Reaction 12, Deactivation of MPF to Inhibited MPF” on page C-53
“Reaction 13, Activation of Inhibited MPF” on page C-53

“Reaction 15, Degradation of Cyclin B on Active but Inhibited MPF” on
page C-54

“Reaction 16, Inhibit MPF by Phosphorylation” on page C-54

“Reaction 17, Remove Inhibiting Phosphate from Activated MPF” on page
C-55

“Reaction 19, Degradation of Cyclin B on Activated MPF” on page C-55
“Reaction 36, Activation of Cdc25 by Activated MPF” on page C-55
“Reaction 37, Deactivation of Cdc25” on page C-56

“Reaction 38, Deactivation of Weel by Active MPF” on page C-56
“Reaction 39, Activation of Weel” on page C-56

“Reaction 40, Activation of Intermediate Enzyme by Active MPF ” on page
C-57

“Reaction 41, Deactivation of IE” on page C-57

“Reaction 42, APC Activation by IEp” on page C-57

“Reaction 43, APC Deactivation” on page C-57

“Block Diagram of the M-Phase Control Model with Reactions” on page C-58
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Overview

There can be one or more reactions for an equation defining a species and
one algebraic rule for each variable parameter in the M-phase control model
[Marlovits 1998]. For a list and description of the equations, see “M-Phase

Control Equations” on page C-27.

A basic model includes reactions 1 to 8, 11 to 13, 15 to 17, 19, and 36 to 43
with algebraic rules from equations 17, 18, and 19.

Reaction 1, Synthesis of Cyclin B

Cyclin B is synthesized at a constant rate.

reaction:
reaction rate:
parameter:
species:

Simulate reaction 1 with the sundials solver.

AA -> CycB

k1 nM/minute

k1 =1 nM/minute
CycB = 0 nM

AA = 100 nM [x]constant [x]boundary

<} Time - Figure 1
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Reaction 2, Degradation of Cyclin B
Cyclin B is degraded at the end of the M-phase.

reaction: CycB -> AA
reaction rate: K2*CycB nM/minute
parameters: K2 = 0 1/minute, []constant, variable by rule
V2i = 0.005 1/nM*minute
V2a = 0.25 1/nM*minute

species: CycB = 0 nM
APCi = 1 nM
APCa = 0 nM

AA = 100 nM [x]constant [x]boundary
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Initially, Cyclin B degradation is low. This implies the amount of active APC
(APCa) = 0 and inactive APC (APCi) = APCtotal = 1 nM.

Test the algebraic rule by simulating reactions 1 and 2 with APCi = 0 and
APCa = 1.

-} Time - Figure 1
File Edit ‘iew Insert Tools Desktop Window Help

il . . . .

Species Amounts
[E]
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Reaction 3, Dimerization of Cyclin B with Cdc2 Kinase
Cyclin B dimerizes with Cdc2 kinase to form M-phase promoting factor (MPF).

reaction:
reaction rate:
parameters:
species:

Cdc2 + CycB -> MPF
k3*Cdc2*CycB nM/minute

k3 = 0.005 1/(nM*minute)
Cdc2 = 100 nM
CycB = 0 nM
MPF = 0 nM

Test the model by simulating with K2 = 0.25.

<} Time - Figure 2 _ O] x|

File Edit ‘iew Insert Tools Deskitop Window Help o~
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Reaction 4, Degradation of Cyclin B on MPF
Cyclin B is tagged with ubiquitin groups and degrades while bound to Cdc2.

reaction:
reaction rate:
parameters:

species:

MPF -> Cdc2 + AA
K2* [MPF]
K2 = 0 or 0.25 1/minute, variable by rule

v2i = 0.005 1/(nM*minute)
v2a = 0.25 1/(nM*minute)
MPF = 0 nM
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APCi 1 nM

APCa = 0 nM

AA = 100 nM [x]constant [x]boundary
algebraic rule: (v2i*APCi) + (v2a*APCa) - K2

Test the simulation with APCa = 1 and APCi = 0. Because the amount of
APCa (active) is high, K2 increases and the degradation starts to balance
the synthesis of MPF.

_lofx
File Edit ‘iew Insert Tools Deskitop Window Help
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Reaction 5, Deactivation of Active MPF

Active MPF (MPFp) is dephosphorylated on Thr-161 by an unknown
phosphatase (PP) to inactive MPF (MPF).

reaction: MPFp -> MPF
reaction rate: kpp*[MPFp]
parameters: kpp = 0.004 1/minute
species: MPFp = 0 nM
MPF = 0 nM
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kcakr = 0.004 1/minute [Marlovits 1998, p. 175], but is renamed to kpp
[Borisuk 1998].

Test simulation with APCa = 1 and APCi = 0. MPF increases without
reaching steady state.

_lof x|
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Reaction 6, Activation of MPF

Inactive MPF (MPF) is phosphorylated on Thr-161 by an unknown cyclin
activating kinase (CAK).

reaction: MPF -> MPFp
reaction rate: kcak*[MPF]
parameters: kcak = 0.64 1/minute
species: MPF = 0 nM
MPFp = 0 nM

The kinase reaction that phosphorylates MPF to the active form is 160 times
faster than the phosphatase reaction that dephosphorylates active MPF.

Simulate the model with reactions 1 to 6. Notice that after adding reaction 6,
most of the product goes to active MPF (MPFp).
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=10 x|

File Edit ‘iew Insert Tools Desktop Window Help
20 . . ;

15

10+

Species Amounts

Time {seconds)

Reaction 7, Remove Inhibiting Phosphate from Inhibited MPF

Cdc25 phosphatase removes the inhibiting phosphate groups at the threonine
14 and tyrosine 15 residues on Cdc2 kinase.

reaction: pMPF -> MPF
reaction rate: Kcdc25*[pMPF]
parameters: Kcdc25 = 0.0 1/minute or 0.017 1/minute, variable by
algebraic rule
V25i 0.017 1/ (mM*minute)
V25a = 0.17 1/mM*minute
species: pMPF = 0 nM
MPF = 0 nM
Cdc25 = 1 nM (inactive)
Cdc25p = 0 nM (active)
algebraic rule: (v25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

Initially, all of the Cdc25 phosphatase is in the inactive form (Cdc25).

Enter the initial value for Kede25 as 0.0 and let the first time step calculate
the value from the rule, or enter an initial value using the rule.

C-50



Model of M-Phase Control in Xenopus Qocyte Extracts

Initially, set ConstantAmount for Cdc25 and Cdc25p to test reactions
1 through 7. Then after you can add the reactions to regulate the Cdc25
phosphatase by clearing the ConstantAmount property.

Reaction 8, Inhibition of MPF by Phosphorylation

Addition of inhibiting phosphate groups by Weel kinase to inhibit active
M-phase promoting factor (MPF). Myt1 kinase is also involved with the
phosphorylation, but its contribution is grouped with Weel.

reaction: MPF -> pMPF
reaction rate: Kweel*[MPF]
parameters: Kweel = 0.0 1/minute or 0.01 1/minute, variable by
algebraic rule
Vweeli = 0.01 1/(nM*minute)
Vweela = 1.0 1/(nM*minute)
species: MPF = 0 nM
pMPF = 0 nM
Weeip = 1 nM (inactive)
Weeli = 0 nM (active)
algebraic rule: (Vweeli*Weelp) + (Vweela*Weel) - Kweei

The initial capitalization for the parameter Kweel is a convention to indicate
that this value changes during the simulation.

Test the simulation for reactions 1 through 8 with Wee1p (inactive) = 1 and
Wee1 (active) = 0.
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Test the simulation with Wee1p (inactive) = 0 and Wee1 (active) = 1.
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Reaction 11, Degradation of Cyclin B on Inhibited MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged
with ubiquitin groups and degrades while bound to Cdc2.

reaction: pMPF -> Cdc2 + AA
reaction rate: K2*[pMPF] nM/minute
parameters: K2 = 0 or 0.25 1/minute, variable by rule
V2i = 0.005 1/nM*minute
V2a 0.25 1/nM*minute
species: MPF 0 nM
APCi = 1 nM
APCa = 0 nM
AA = 100 nM [x]constant [x]boundary
Cdc2 = 100 nm
algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Test the simulation with Weel active (Wee1 = 1) and APC active (APCi = 1).

Reaction 12, Deactivation of MPF to Inhibited MPF
Inhibited/active MPF (pMPFp) is dephosphorylated on Thr-161 by an
unknown phosphatase (PP) to inhibited MPF (pMPF). Compare reaction 12
with reaction 5.

reaction: pMPFp -> pMPF
reaction rate: kpp*[pMPFp]
parameters: kpp = 0.004 1/minute
species: pMPFp = 0 nM
pMPF 0 nM

Reaction 13, Activation of Inhibited MPF

Inhibited MPF (pMPF) is phosphorylated on Thr-161 by an unknown
cyclin-activating kinase (CAK). Compare reaction 13 with reaction 6.

reaction: pMPF -> pMPFp
reaction rate: kcak*[pMPF] nM/minute
parameters: kcak = 0.64 1/minute
species: pMPF = 0 nM
pMPFp = 0 nM
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Test the simulation with Weelp = 1 (inactive)/ Weel = 0 and then test with
Weelp = 0 (inactive)/ Weel = 1.

Reaction 15, Degradation of Cyclin B on Active but Inhibited

MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged
with ubiquitin groups and degrades while bound to cdc2 kinase.

reaction:
reaction rate:
parameters:

species:

algebraic rule:

pMPFp -> Cdc2 + AA
K2*[pMPFp] nM/minute

K2 = 0 or 0.25 1/minute, variable by rule
v2i = 0.005 1/nM*minute

v2a = 0.25 1/nM*minute

MPF = 0 nM

APCi = 1 nM

APCa = 0 nM

AA = 100 nM [x]constant [x]boundary

Cdc2 = 100 nm

(V2i*APCi) + (V2a*APCa) - K2

Reaction 16, Inhibit MPF by Phosphorylation

Addition of inhibiting phosphate groups by Weel kinase to inhibit active
M-phase promoting factor (MPF). Myt1 kinase is also involved with the
phosphorylation, but its contribution is grouped with Weel.

reaction:
reaction rate:
parameters:

species:

algebraic rule:
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MPFp -> pMPFp
Kweel1*[MPFp] nM/minute

Kweel = 1/minute []constant, variable by rule
Vweei = 0.01 1/nM*minute

Vweea = 1 1/nM*minute

MPFp = 0 nM

pMPFp = 0 nM

Weeip = 1 nM (inactive)

Weel = 0 nM (active)

(Vweeli*Weelp) + (Vweela*Weel) - Kweel
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Reaction 17, Remove Inhibiting Phosphate from Activated MPF
Remove the inhibiting phosphate group from pMPFp with cdc25 phosphatase.

reaction: pMPFp -> MPFp
reaction rate: Kcdc25*[pMPFp]
parameters: Kcdc25 = 0 1/minue, []constant, variable by rule
V251 = 0.017 1/nM*minute
V25a = 0.17 1/nM*minute
species: pMPFp = 0 nM
MPFp = 0 nM
algebraic rule: (v25i*Cdc25) + (V25a*Cdc25p) - Kcdc25

Reaction 19, Degradation of Cyclin B on Activated MPF

Degradation of cyclin B (CycB) on inhibited MPF (pMPF). Cyclin B is tagged
with ubiquitin groups and degrades while bound to cdc2 kinase.

reaction: MPFp -> MPF + AA
reaction rate: K2*[MPFp] nM/minute
parameters: K2 = 0 or 0.25 1/minute, variable by rule

vV2i 0.005 1/nM*minute
V2a 0.25 1/nM*minute

species: MPF = 0 nM
MPFp = 0 nM
APCi 1 nM
APCa = 0 nM
AA = 100 nM [x]constant [x]boundary
Cdc2 = 100 nm

algebraic rule: (V2i*APCi) + (V2a*APCa) - K2

Reaction 36, Activation of Cdc25 by Activated MPF

Activation of cdc25 phosphatase by phosphorylation with active M-phase
promoting factor (MPFp).

reaction: Cdc25 + (MPFp) -> Cdc25p + (MPFp)
reaction rate: (k25*[MPFp]*[Cdc25])/(Km25 + [Cdc25])
parameters: k25 = 0.02 1/minute
Km25 = 0.1 nM
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species: Cdc25 = 1 nM (inactive)
Cdc25p = 0 nM (active)

Initially MPF is inhibited (MPF* reacts to pMPF¥).

Reaction 37, Deactivation of Cdc25

Deactivation of cdc25 phosphatase by dephosphorylation with an unknown
phosphatase.

reaction: Cdc25p -> Cdc25
reaction rate: (k25r*[Cdc25p])/(Km25r + [Cdc25p])
parameters: k25r = 0.1 nM/minute
Km25r 1 nM
species: Cdc25 1 nM (inactive)
Cdc25p = 0 nM (active)

Reaction 38, Deactivation of Weel by Active MPF

Deactivation of Weel kinase by phosphorylation with active M-phase
promoting factor (MPFp).

reaction: Weel + (MPFp) -> Weeip + (MPFp)
reaction rate: (kw*[MPFp]*[Weel1])/(Kmw + [Weel]) nM/minute
parameters: kw = 0.02 1/minute
Kmw = 0.1 nM
species: Weelp = 1 nM (inactive)
Weel = 0 nM (active)

Initially MPF is inhibited (MPF* reacts to pMPF¥).

Reaction 39, Activation of Weel
Activation of Weel kinase by dephosphorylation with an unknown kinase.

reaction: Weelp -> Weef
reaction rate: (kwr*[Weeip])/(Kmwr + [Weeilp]) nM/minute
parameters: kwr = 0.1 nM/minute
Kmwr = 1 nM
species: Weeip = 1 nM (inactive)
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Weel = 0 nM (active)

Reaction 40, Activation of Intermediate Enzyme by Active MPF

The inactive intermediate enzyme (IE) is activated by phosphorylation with
active M-phase promoting factor (MPFp).

reaction: IE + (MPFp) -> IEp + (MPFp)
reaction rate: (kie*[MPFp]*[IE])/(Kmie + [IE])
parameters: kie = 0.02 1/minute
Kmie = 0.01nM
species: IE = 1 nM (inactive)
IEp = 0 nM (active)

Reaction 41, Deactivation of IE
The active intermediate enzyme (IE) is deactivated by dephosphorylation.

reaction: IEp -> IE
reaction rate: (kier*[IEp])/(Kmier + [IEp])
parameters: kier = 0.15 nM/minute
Kmier = 0.01 nM
species: IE = 1 nM (inactive)
IEp = 0 nM (active)

Reaction 42, APC Activation by IEp

Anaphase-promoting complex (APC) is activated by an active intermediate
enzyme (IEp).

reaction: APCi + IEp -> APCa + IEp
reaction rate: (kap*[IEp]*[APCi])/(Kmap + [APCi])
parameters: kap = 0.13 1/minute

Kmap = 0.01 nM
species : APCi = 1 nM
APCa = 0 nM

Reaction 43, APC Deactivation
Anaphase-promoting complex (APC) is deactivated.
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reaction: APCa -> APCi
reaction rate: (kapr*[APCa])/(Kmapr + [APCal)
parameters: kapr = 0.13 nM/minute
Kmapr = 1 nM
species : APCi = 1 nM
APCa = 0 nM

Block Diagram of the M-Phase Control Model with Reactions
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